
Chasing the Penguin:
State and Evolution of the Kernel

Wolfgang Mauerer

MPRG IOIP & linux-kernel.net
10. October 2008

www.linux-kernel.net W. Mauerer, Chasing the Penguin

Dynamics of Kernel Development

Kernel Documentation

Understanding the Kernel
Documenting new Features
Analysis Tools

Social Aspects

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

3 Outline

Dynamics of Kernel Development

Kernel Documentation

Understanding the Kernel
Documenting new Features
Analysis Tools

Social Aspects

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

4 Dynamics of Kernel Development

0.0

200.0k

400.0k

600.0k

800.0k

1.0M

1.2M

1.4M

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

lin

es
 a

ffe
ct

ed

Kernel 2.6.x logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

4 Dynamics of Kernel Development

0

2 M

4 M

6 M

8 M

10 M

12 M

14 M

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

lin

es
 a

ffe
ct

ed

Kernel 2.6.x

Cumulative
Insertions
Deletions

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25

R
el

at
iv

e
si

ze

Kernel 2.6.x

Core Kernel
Linear fit

Complete Kernel
Device Drivers

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 10 20 30 40 50 60

Kernel 2.5.x

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25

R
el

at
iv

e
si

ze

Kernel 2.6.x

Core Kernel
Linear fit

Complete Kernel
Device Drivers

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 10 20 30 40 50 60

Kernel 2.5.x

Hare and Tortoise

I Code sufficient?
I How to document?
I Which parts?

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25

R
el

at
iv

e
si

ze

Kernel 2.6.x

Core Kernel
Linear fit

Complete Kernel
Device Drivers

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 10 20 30 40 50 60

Kernel 2.5.x

Hare and Tortoise

I Code sufficient?
I How to document?
I Which parts?

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

6 Outline

Dynamics of Kernel Development

Kernel Documentation

Understanding the Kernel
Documenting new Features
Analysis Tools

Social Aspects

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

7 What’s available?
In-Tree

I Comments and Kerneldoc
I Documentation/
I Git commit messages

External

I LKML and others
I Websites: lwn.net,

kernelnewbies.org, . . .
I Books and Articles

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

7 What’s available?
In-Tree

I Comments and Kerneldoc
I Documentation/
I Git commit messages

External

I LKML and others
I Websites: lwn.net,

kernelnewbies.org, . . .
I Books and Articles

/**
* clocksource_khz2mult - calculates mult from khz and shift
* @khz: Clocksource frequency in KHz
* @shift_constant: Clocksource shift factor
*
* Helper functions that converts a khz counter frequency to a timsource
* multiplier, given the clocksource shift value
*/
static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
...

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

7 What’s available?
In-Tree

I Comments and Kerneldoc
I Documentation/
I Git commit messages

External

I LKML and others
I Websites: lwn.net,

kernelnewbies.org, . . .
I Books and Articles

sx.txt – specialix SX/SI multiport serial driver readme.
Copyright (C) 1997 Roger Wolff (R.E.Wolff@BitWizard.nl)
...
Introduction
============

This file contains some random information, that I like to have online
instead of in a manual that can get lost. Ever misplace your Linux
kernel sources? And the manual of one of the boards in your computer?
...

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

7 What’s available?
In-Tree

I Comments and Kerneldoc
I Documentation/
I Git commit messages

External

I LKML and others
I Websites: lwn.net,

kernelnewbies.org, . . .
I Books and Articles

commit 2087a1ad822cd3a68b73338457047fcc54da726b
Author: Gregory Haskins <ghaskins@novell.com>
Date: Fri Jun 27 14:30:00 2008 -0600

sched: add avg-overlap support to RT tasks

We have the notion of tracking process-coupling (a.k.a. buddy-wake) via
the p->se.last_wake / p->se.avg_overlap facilities, but it is only used
for cfs to cfs interactions. There is no reason why an rt to cfs
interaction cannot share in establishing a relationhip in a similar
manner.

Because PREEMPT_RT runs many kernel threads as FIFO priority, we often
times have heavy interaction between RT threads waking CFS applications.
This patch offers a substantial boost (50-60%+) in perfomance under those
circumstances.

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

7 What’s available?
In-Tree

I Comments and Kerneldoc
I Documentation/
I Git commit messages

External

I LKML and others
I Websites: lwn.net,

kernelnewbies.org, . . .
I Books and Articles

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

7 What’s available?
In-Tree

I Comments and Kerneldoc
I Documentation/
I Git commit messages

External

I LKML and others
I Websites: lwn.net,

kernelnewbies.org, . . .
I Books and Articles

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

7 What’s available?
In-Tree

I Comments and Kerneldoc
I Documentation/
I Git commit messages

External

I LKML and others
I Websites: lwn.net,

kernelnewbies.org, . . .
I Books and Articles

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

7 What’s available?
In-Tree

I Comments and Kerneldoc
I Documentation/
I Git commit messages

External

I LKML and others
I Websites: lwn.net,

kernelnewbies.org, . . .
I Books and Articles

Problems

I Available? Location?
I Uptodate? Complete?

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

8 Summary

3 What’s good

I Huge amount of
documentation available

I Implicit documentation in git
I Documentation

infrastructure available

7 What’s bad

I Focus on people already
intimate with the code

I Implicit documentation in git
I No consistent style
I Very fragmented and

scattered

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

9 Outline

Dynamics of Kernel Development

Kernel Documentation

Understanding the Kernel
Documenting new Features
Analysis Tools

Social Aspects

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

10 Documenting new features

Completely Fair Scheduler

I Turbulent emergence
I Completely replaces old

scheduler
I Considerable in-tree

development after merge

High Resolution Timers

I Long external development
I New foundation for existing

framework
I Merged at very mature

state

Opposite strategies. . .

. . . also with respect to documentation!

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

10 Documenting new features

Completely Fair Scheduler

I Turbulent emergence
I Completely replaces old

scheduler
I Considerable in-tree

development after merge

High Resolution Timers

I Long external development
I New foundation for existing

framework
I Merged at very mature

state

Opposite strategies. . .

. . . also with respect to documentation!

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

10 Documenting new features

Completely Fair Scheduler

I Turbulent emergence
I Completely replaces old

scheduler
I Considerable in-tree

development after merge

High Resolution Timers

I Long external development
I New foundation for existing

framework
I Merged at very mature

state

Opposite strategies. . .

. . . also with respect to documentation!

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

10 Documenting new features

Completely Fair Scheduler

I Turbulent emergence
I Completely replaces old

scheduler
I Considerable in-tree

development after merge

High Resolution Timers

I Long external development
I New foundation for existing

framework
I Merged at very mature

state

Opposite strategies. . .

. . . also with respect to documentation!

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

11 High Resolution Timers

Mauerer runc15.tex V2 - 08/20/2008 7:18pm Page 894

Chapter 15: Time management

❑ Devices with limited power (i.e., laptops, embedded systems, etc.) need to use as little energy
as possible when there is nothing to do. If a periodic clock is running, there is, however, nearly
always something to do — the tick must be provided. But if no users for the tick are present, it
would basically not need to run. Nevertheless, the system needs to be brought from a low-power
state into a state with higher power consumption just to implement the periodic tick.

❑ Multimedia-oriented applications need very precise timekeeping, for instance, to avoid frame
skips in videos, or jumps during audio playback. This necessitated increasing the available
resolution.

Finding a good solution agreeable to all developers (and users!) who come into contact with time
management — and there is quite a large number of them — took many years and a good many
proposed patches. The current state is rather unusual because two rather distinct types of timers are
supported by the kernel:

❑ Classical timers have been available since the initial versions of the kernel. Their implementation
is located in kernel/timer.c. A resolution of typically 4 milliseconds is provided, but the value
depends on the frequency with which the machine’s timer interrupt is operated. These classical
timers are called low-resolution or timer wheel timers.

❑ For many applications, especially media-oriented ones, a timer resolution of several millisec-
onds is not good enough. Indeed, recent hardware provides means of much more precise timing,
which can achieve resolutions in the nanosecond range formally. During the development of
kernel 2.6, an additional timer subsystem was added allowing the use of such timer sources. The
timers provided by the new subsystem are conventionally referred to as high-resolution timers.

Some code for high-resolution timers is always compiled into the kernel, but the implementation
will only perform better than low-resolution timers if the configuration option HIGH_RES_TIMERS
is set. The framework introduced by high-resolution timers is reused by low-resolution timers
(in fact, low-resolution timers are implemented on top of the high-resolution mechanism).

Classical timers are bound by a fixed raster, while high-resolution clock events can essentially happen at
arbitrary times; see Figure 15-1. Unless the dynamic ticks feature is active, it can also happen that ticks
occur when no event expires. High-resolution events, in contrast, only occur when some event is due.

Time

Jiffie 1234 1235 1236 1237 1238 1239

Tick with
events

Tick w/o events

High resolution
event

Figure 15-1: Comparison between low- and high-resolution timers.

Why did the developers not choose the seemingly obvious path and improve the already existing timer
subsystem, but instead added a completely new one? Indeed, some people tried to pursue this strategy,
but the mature and robust structure of the old timer subsystem did not make it particularly easy to
improve while still being efficient — and without creating new problems. Some more thoughts on this
problem can be found in Documentation/hrtimers.txt.

894

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

11 High Resolution Timers

Mauerer runc15.tex V2 - 08/20/2008 7:18pm Page 895

Chapter 15: Time management

Independent of the resolution, the kernel nomenclature distinguishes two types of timers:

❑ Time-outs — Represent events that are bound to happen after some time, but can and usually
will be canceled before. For example, consider that the network subsystem waits for an incoming
packet that is bound to arrive within a certain period of time. To handle this situation, a timer is
set that will expire after the time is over. Since packets usually arrive on time, chances are that
the timer will be removed before it will actually go off. Besides resolution is not very critical for
these types of timers. When the kernel allows an acknowledgment to a packet to be sent within
10 seconds, it does not really matter if the time-out occurs after 10 or 10.001 seconds.

❑ Timers — Are used to implement temporal sequences. For instance, a sound card driver could
want to issue some data to a sound card in small, periodic time intervals. Timers of this sort will
usually expire and require much better resolution than time-outs.

An overview of the building blocks employed to implement the timing subsystem is given in Figure 15-2.
Owing to the nature of an overview, it is not too precise, but gives a quick glance at what is involved in
timekeeping, and how the components interact with each other. Many details are left to the following
discussion.

Clock
sources

Timer
wheel

High-resolution
timers

Low-resolution
timers

Clock
events

Generic time & clockevents layer

Architecture specific code

Hardware clock chips

Process
accounting

Jiffies &
Global tick

per CPU system-wide

Figure 15-2: Overview of the components that build up the timing subsystem.

The raw hardware sits at the very bottom. Every typical system has several devices, usually implemented
by clock chips, that provide timing functionality and can serve as clocks. Which hardware is available
depends on the particular architecture. IA-32 and AMD64 systems, for instance, have a programmable
interrupt timer (PIT, implemented by the 8253 chip) as a classical clock source that has only a very mod-
est resolution and stability. CPU-local APICs (advanced programmable interrupt controllers), which were
already mentioned in the context of IRQ handling, provide much better resolution and stability. They are
suitable as high-resolution time sources, whereas the PIT is only good enough for low-resolution timers.

Hardware naturally needs to be programmed by architecture-specific code, but the clock source abstraction
provides a generic interface to all hardware clock chips. Essentially, read access to the current value of
the running counter provided by a clock chip is granted.

895

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

11 High Resolution Timers

Mauerer runc15.tex V2 - 08/20/2008 7:18pm Page 921

Chapter 15: Time management

Components of the high-resolution timer framework that are not universally applicable, but
do really provide actual high-resolution capabilites are bracketed by the pre-processor symbol
CONFIG_HIGH_RES_TIMERS, and are only compiled in if high-resolution support is selected at compile
time. The generic part of the framework is always added to the kernel.

This means that even kernels that only support low resolution contain parts of the
high-resolution framework, which can sometimes lead to confusion.

15.4.1 Data Structures
High-resolution timers can be based on two different types of clocks (which are referred to as clock
bases). The monotonic clock starts at 0 when the system is booted (CLOCK_MONOTONIC). The other clock
(CLOCK_REALTIME) represents the real time of the system. The latter clock may exhibit skips if, for instance,
the system time is changed, but the monotonic clock runs, well, monotonously all the time.

For each CPU in the system, a data structure with both clock bases is available. Each clock base is
equipped with a red-black tree that sorts all pending high-resolution timers. Figure 15-12 summarizes
the situation graphically. Two clock bases (monotonic and real time) are available per CPU. All timers
are sorted by expiration time on a red-black tree, and expired timers whose callback handlers still need
to be executed are moved from the red-black tree to a linked list.

clock_base[0]

Red-black-tree

clock_base[1]

clock_base[0]

cb_pending

cb_pending

clock_base[1]

hrtimer_bases

Status info

active

first

first

active

first

active

active

first

CPU 1

Status infoCPU 2

struct hrtimer_clock_base

Expired timers pending
to be processed

struct
hrtimer

Callback pending
list

Figure 15-12: Overview of the data structures used to implement high-resolution timers.

A clock base is given by the following data structure:

<hrtimer.h>
struct hrtimer_clock_base {

struct hrtimer_cpu_base *cpu_base;
clockid_t index;
struct rb_root active;
struct rb_node *first;
ktime_t resolution;
ktime_t (*get_time)(void);

921

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

Mauerer runc15.tex V2 - 08/20/2008 7:18pm Page 927

Chapter 15: Time management

struct hrtimer_clock_base *base;
ktime_t expires_next, now;

...
retry:

now = ktime_get();

expires_next.tv64 = KTIME_MAX;
base = cpu_base->clock_base;

...

Select expired
timers

Reprogram hardware for next event

Raise HRTIMER_SOFTIRQ

HRTIMER_SORTIRQ

run_hrtimer_softirq
Process pending
timers

hrtimer_interrupt

Move to expired list

Execute directly

High-resolution
clock interrupt

Figure 15-13: Overview of expiration of high-resolution timers with
high-resolution clocks.

The expiration time of the timer that is due next is stored in expires_next. Setting this to KTIME_MAX
initially is another way of saying that no next timer is available. The main work is to iterate over all clock
bases (monotonic and real-time).

kernel/hrtimer.c
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {

ktime_t basenow;
struct rb_node *node;
basenow = ktime_add(now, base->offset);

Essentially, basenow denotes the current time. base->offset is only non-zero when the real-time clock
has been readjusted, so this will never affect the monotonic clock base. Starting from base->first, the
expired nodes of the red-black tree can be obtained:

kernel/hrtimer.c
while ((node = base->first)) {

struct hrtimer *timer;

timer = rb_entry(node, struct hrtimer, node);
if (basenow.tv64 < timer->expires.tv64) {

ktime_t expires;

expires = ktime_sub(timer->expires,
base->offset);

927

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

13 High Resolution Timers

Available

I Orthogonal patch structure
I Component submission
I Design Documentation

Challenges

I Introduce conceptual parts
I Disentangle alternatives
I Prioritise important against

unimportant code

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

14 Completely Fair Scheduler

Mauerer runc02.tex V2 - 08/06/2008 5:47pm Page 85

Chapter 2: Process Management and Scheduling

Every time the scheduler is called, it picks the task with the highest waiting time and gives the CPU to
it. If this happens often enough, no large unfairness will accumulate for tasks, and the unfairness will be
evenly distributed among all tasks in the system.

Figure 2-12 illustrates how the scheduler keeps track of which process has been waiting for how long.
Since runnable processes are queued, the structure is known as the run queue.

Real clock Virtual clock

task
picked
to run

Time ordered
Red-black tree

Run queue

decreasing
wait time

CPU

Figure 2-12: The scheduler keeps track of the
waiting time of the available processes by sorting
them in a red-black tree.

All runnable tasks are time-ordered in a red-black tree, essentially with respect to their waiting time. The
task that has been waiting for the CPU for the largest amount of time is the leftmost entry and will be
considered next by the scheduler. Tasks that have been waiting less long are sorted on the tree from left
to right.

If you are not familiar with red-black trees, suffice it to know here that this data structure allows for
efficient management of the entries it contains, and that the time required for lookup, insertion, and dele-
tion operations will only moderately rise with the number of processes present in the tree.20 Red-black
trees are available as a standard data structure of the kernel, and Appendix C provides more information
about them. Besides, a discussion of such trees can be found in every textbook on data structures.

Besides the red-black tree, a run queue is also equipped with a virtual clock.21 Time passes slower on
this clock than in real time, and the exact speed depends on the number of processes that are currently
waiting to be picked by the scheduler. Suppose that four processes are on the queue: Then the virtual
clock will run at one-quarter of the speed of a real clock. This is the basis to determine how much CPU
time a waiting process would have gotten if computational power could be shared in a completely fair
manner. Sitting on the run queue for 20 seconds in real time amounts to 5 seconds in virtual time. Four
tasks executing for 5 seconds each would keep the CPU occupied for 20 seconds in real time.

20To be precise: Time complexity is O(log n), where n is the number of elements in the tree. This is worse than for the old scheduler,
which was famous for being an O(1) scheduler, that is, its run time was independent of the number of processes it had to deal with.
However, the slow-down caused by the linear-logarithmic dependency of the new scheduler is negligible unless a huge number of
processes is simultaneously runnable. In practice, such a situation does not occur.
21Notice that the kernel really used the concept of a virtual clock for the scheduling mechanism in kernel 2.6.23, but currently com-
putes the virtual time a little differently. Since the method is easier to understand with virtual clocks, I will stick to this now and
discuss how the virtual clock is emulated when I discuss the scheduler implementation.

85

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

14 Completely Fair Scheduler
Virtual clock replacement
static inline s64 entity_key(struct cfs_rq *cfs_rq,

struct sched_entity *se) {
return se->vruntime - cfs_rq->min_vruntime;

}

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

15 Completely Fair Scheduler

Conclusions

I Code history can ease documentation
I Identify stable components
I Reduce complexity

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

16 Analysis Tools

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

16 Analysis Tools

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

17 LXR Source Code Cross Reference

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

17 LXR Source Code Cross Reference

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

18 (K)GDB and DDD

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

18 (K)GDB and DDD

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

18 (K)GDB and DDD

Andrew Morton on KGDB
I used kgdb continuously for 4-5 years until it broke. I don’t think I ever
used it much for “debugging” as such. I used it more for general
observation of what’s going on in the kernel. And for confirmation of
what’s going on (ie: testing that the actual state matches the expected
state).

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

19 Git and GUIs

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

20 How it all fits together

Data
Structures

Algorithms

LXR

GIT

UML

GDB
KGDB

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

21 How it all fits together

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

22 Outline

Dynamics of Kernel Development

Kernel Documentation

Understanding the Kernel
Documenting new Features
Analysis Tools

Social Aspects

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

From: Con Kolivas
Ooh you have a vm patch that helps swap on the desktop! I can help you
here with my experience from swap prefetch.

1. Get it reviewed and have noone show any evidence it harms
2. Find hundreds of users who can testify it helps
3. Find a way of quantifying it.
4. ...
5. Merge into mainline.

There, that should get you as far as 4. I haven’t figured out what 4

is yet. I believe it may be goto 1;

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

From: Con Kolivas
Ooh you have a vm patch that helps swap on the desktop! I can help you
here with my experience from swap prefetch.

1. Get it reviewed and have noone show any evidence it harms
2. Find hundreds of users who can testify it helps
3. Find a way of quantifying it.
4. ...
5. Merge into mainline.

There, that should get you as far as 4. I haven’t figured out what 4

is yet. I believe it may be goto 1;

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

Linus on smelly pets

Ok, so now that I’ve insulted you and your pets (they’re
ugly!), show me wrong, and then call me a d*ckhead.
(“Linus - you’re a d*ckhead, and you didn’t understand the
problem, so you’re a stupid d*ckhead. And my pet may be
ugly, but yours smells bad!”).

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

From: Rusty Russel

-#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
+#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) \
+ + sizeof(typeof(int[1 - 2*!!__builtin_types_compatible_p(typeof(arr), \
+ typeof(&arr[0]))]))*0)

Reply from Linus Torvalds

Rusty, that’s a work of art.
However, I would suggest that you never show it to anybody ever
again. I’m sure that in fifty years, it will be worth much more. So
please keep it tightly under wraps, to keep people from gouging their
eyes out^W^W^W^W^W^W^W make a killing in the art market.

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

Improved patch

OK, many people complained that it needed a comment. Good point!
==
Add comment to ARRAY_SIZE macro.
diff -r 933e410f204f include/linux/kernel.h
--- a/include/linux/kernel.h Sat Mar 10 09:55:31 2007 +1100
+++ b/include/linux/kernel.h Sat Mar 10 09:55:53 2007 +1100
<at> <at> -35,6 +35,7 <at> <at> extern const char linux_proc_banner[];
#define ALIGN(x,a) __ALIGN_MASK(x,(typeof(x))(a)-1)
#define __ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))

+/* GCC is awesome. */
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) \
+ sizeof(typeof(int[1 - 2*!!__builtin_types_compatible_p(typeof(arr), \
typeof(&arr[0]))]))*0)

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

Thanks for you attention!

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

28 A Comparison: Allocating Memory

Everybody needs memory

I Core OS service
I Stable interface (introduced ≈ v0.98)
I Documentation situation representative

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

FreeBSD

www.freebsd.org/cgi/man.cgi?query=malloc\&apropos=0\&sektion=0\&manpath=FreeBSD+7.0-RELEASE\&format=htmllogo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

www.freebsd.org/cgi/man.cgi?query=malloc\&apropos=0\&sektion=0\&manpath=FreeBSD+7.0-RELEASE\&format=html

Mac OS

developer.apple.com/documentation/DeviceDrivers/Conceptual/WritingDeviceDriver/CPluPlusRuntime/chapter_2_

section_3.html#//apple_ref/doc/uid/TP30000695-BAJCCBGJ

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

developer.apple.com/documentation/DeviceDrivers/Conceptual/WritingDeviceDriver/CPluPlusRuntime/chapter_2_section_3.html#//apple_ref/doc/uid/TP30000695-BAJCCBGJ
developer.apple.com/documentation/DeviceDrivers/Conceptual/WritingDeviceDriver/CPluPlusRuntime/chapter_2_section_3.html#//apple_ref/doc/uid/TP30000695-BAJCCBGJ

Windows

msdn.microsoft.com/en-us/library/ms796989.aspx logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

msdn.microsoft.com/en-us/library/ms796989.aspx

Perl

PERLGUTS (1)Perl Programmers Reference GuidePERLGUTS (1)

MMeemmoorryy AAllllooccaattiioonn

It is suggested that you use the version of malloc that is distributed with Perl. It keeps
pools of various sizes of unallocated memory in order to satisfy allocation requests
more quickly. Howev er, on some platforms, it may cause spurious malloc or free
errors.

New(x, pointer, number, type);
Newc(x, pointer, number, type, cast);
Newz(x, pointer, number, type);

These three macros are used to initially allocate memory.

The first argument x was a ‘‘magic cookie’’ that was used to keep track of who called
the macro, to help when debugging memory problems. However, the current code
makes no use of this feature (most Perl developers now use run-time memory check-
ers), so this argument can be any number.

The second argument pointer should be the name of a variable that will point to the
newly allocated memory.

The third and fourth arguments number and type specify how many of the specified
type of data structure should be allocated. The argument type is passed to sizeof.
The final argument to Newc, cast, should be used if the pointer argument is dif-
ferent from the type argument.

Unlike the New and Newc macros, the Newz macro calls memzero to zero out all the
newly allocated memory.

Renew(pointer, number, type);
Renewc(pointer, number, type, cast);
Safefree(pointer)

These three macros are used to change a memory buffer size or to free a piece of mem-
ory no longer needed. The arguments to Renew and Renewc match those of New and
Newc with the exception of not needing the ‘‘magic cookie’’ argument.

Move(source, dest, number, type);
Copy(source, dest, number, type);
Zero(dest, number, type);

These three macros are used to move, copy, or zero out previously allocated memory.
The source and dest arguments point to the source and destination starting points.
Perl will move, copy, or zero out number instances of the size of the type data struc-
ture (using the sizeof function).

PP eerrllIIOO

The most recent development releases of Perl has been experimenting with removing
Perl’s dependency on the ‘‘normal’’ standard I/O suite and allowing other stdio imple-
mentations to be used. This involves creating a new abstraction layer that then calls
whichever implementation of stdio Perl was compiled with. All XSUBs should now
use the functions in the PerlIO abstraction layer and not make any assumptions about
what kind of stdio is being used.

3rd Berkeley Distribution perl 5.005, patch 02 PERLGUTS (1)−21

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

Linux

www.kernel.org/doc/htmldocs/kernel-api/ch05.html

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

www.kernel.org/doc/htmldocs/kernel-api/ch05.html

Linux

www.kernel.org/doc/htmldocs/kernel-api/ch05.html

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

www.kernel.org/doc/htmldocs/kernel-api/ch05.html

Linux

www.kernel.org/doc/htmldocs/kernel-api/ch05.html

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

www.kernel.org/doc/htmldocs/kernel-api/ch05.html

That’s what you also get. . .

logo-main

www.linux-kernel.net W. Mauerer, Chasing the Penguin

	Dynamics of Kernel Development
	Kernel Documentation
	Understanding the Kernel
	Documenting new Features
	Analysis Tools

	Social Aspects

