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The O(1) Scheduler

Known as the ultra scalable scheduler
The typical scheduling operations were O(1)

 enqueue

 dequeue

Used rotating priority arrays
Basically a Weighted Round Robin scheduler

 Used nice values for determining time slice

 Used two arrays, active and expired.

– Task finishes its timeslice and goes to the expired array

– When active is empty, the arrays are exchanged and expired 
becomes active and active, expired
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Need for a new scheduler

O(1) had problems
 Determinism

– Was not

– Erratic scheduling patterns

 Runtime Accounting

– Was statistical

– Or too coarse
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Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems

– Similar workloads finish at varying times. Not good!

 Desktop experience

– Desktop Applications,

• Sleep long

• Short time on CPU

– Need to get CPU fast

• Otherwise noticeable effects, for example, audio stutters
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The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel
Moved from priority arrays to time based queues
Fairness

 Equal bandwidth for same priority

 Provided over __sched_period()

Uses an RB Tree to implement the queue
 Uses vruntime as its index

 vruntime is weight proportional runtime

– That means heavier tasks run for longer and get charged lesser

Nice is now exponential and not linear



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?
Two major “features”



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?
Two major “features”

 Shorter time slices: On an average, the CFS has shorter time slices.

– With the help of these, tasks which are further behind, get to run 
faster



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?
Two major “features”

 Shorter time slices: On an average, the CFS has shorter time slices.

– With the help of these, tasks which are further behind, get to run 
faster

 Wakeup behavior

– Typical interactive task -> sleeps for long, and then has a short burst

– Waiting for CPU, not good. Shows up as stutters in amarok

– So we queue up a newly woken up task to the head of the queue
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So how fair is the CFS?

Tried out massive_intr.c
Written by Satoru Takeuchi
Takes two arguments.

 Number of threads

 How long to run the program

Very simple
 Runs a thread for 8ms and then puts it to sleep for 1ms

 At the end of the time, it kills all the threads, and prints out the 
time each thread got
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Refining the CFS: Group Scheduling

Administrator finds it easier to control groups
 Database vs pids 4213,4214,4215...

Control Groups provided the ability to group threads arbitrarily
 So, group “blog”, could consist of webserver and database threads

Srivatsa Vaddagiri extended the CFS to provide group scheduling, 
which would give control over groups such as “blog”

 Merged in v2.6.24
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Scheduler Entity

The CFS as well as the O(1) scheduler deal with just tasks
Group scheduling requires scheduler to deal with “task groups”
Enter sched_entity

 Helped with reuse of the code

 Can mean either a task or a task group. Basically something that 
can be “scheduled”

 Keeps track of vital scheduling data, such vruntime

 Scheduler core modified to work entities rather than tasks
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Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in

 Then, which task in the group selected in the previous step gets 
to run

Limited to just one level of grouping
Tasks in the “root” group are not really

 All tasks are grouped

 Those which are not grouped, form a group :-)
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Group Scheduling

Not really fair
Did not allow multiple levels of grouping
Take 2

 Changed the definition of fairness

– Remember, the root cgroup did not share bandwidth between the 
tasks and groups fairly

 At every level we choose an entity

– If it is a task, we run it

– If it is a group, we choose another entity within it

 Available since v2.6.26
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Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits
 Introduced in v2.6.25

 Trivial case for the group scheduler

 sched_rt_runtime_us -> Runtime Budget

 sched_rt_period_us -> The refresh rate

 Prevents RT tasks from taking over the system
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RT Group Scheduling

sched_rt_entity introduced
 An abstraction similar to sched_entity

Two tunables
 rt_period_us

 rt_runtime_us
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Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended
 Global Scheduling: N CPUs, 1 Runqueue

 Paritioned Scheduling: N CPUs, N Runqueues, no interaction 
between runqueues

 Distributed Scheduling: N CPUs, N Runqueues, loosely coupled to 
approximate global scheduling

Linux uses distributed scheduling
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Scheduler Domains

Today's hardware
 Various sizes

 Various shapes

 In order to handle these, we build sched domains

Domains group processors
 Based on various properties such as shared pipelines, shared 

caches

CPUsets allow the user to carve up CPUs into sets
 Also used for load balancing decisions
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Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up

 Done using sched domains

 Compensates for the fact that memory accesses and migration to 
“far” CPUs is more expensive

Sched groups
 Basically the child domains of a domain

 Pick the busiest group and try to pull from there as long as we 
don't pull too much
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SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication

 Weight of a task became proportional to the weight of its 
supertask

 But the supertask can be spread across multiple CPUs

 That means, the weight of a task is dependent on other 
runqueues. 

 Bad for scalability
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Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task

Just one tiny problem
 How do we do it sanely?

 That is, not touch other CPUs

Use sched domains
 Re-compute shares as we walk up the tree.
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Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks

– Needs instant recalculation on arrival of task, otherwise shares will 
remain zero till we redistribute shares

– Expensive. Arrival and departure of tasks is quite frequent

– Never reduce shares to zero. Inflate shares of idle groups

– Has some short term unfairness, but not more than what was already 
present, due to rebalancing
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The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity

 Need to provide latency isolation

Faster convergence to fairness for group scheduling
Looking at RT scheduling function, independent of PI

 Allows us to experiment with more advanced RT scheduling

 Possibly allow us to extend PI for SCHED_OTHER
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Thank You!

Questions?
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Legal Statement

This work represents the view of the authors and does not 
necessarily represent the view of IBM.

IBM is a registered trademark of International Business Machines 
Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trademarks 

or service marks of others.



IBM Linux Technology Center

© 2008 IBM Corporation

BACKUP
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Scheduler Classes

Scheduler Classes, a definition,

An extensible hierarchy of scheduler modules 
which encapsulate scheduling policy details and are 
handled by the scheduler core without the core 
code assuming about them too much

Ingo Molnar

Essentially what he said, with a few custom changes :)



IBM Linux Technology Center

© 2008 IBM Corporation

The CFS
More vruntime love

Calculated as follows
 When a task forks, vruntime set so that it comes as the rightmost

– Ensures that it does not affect the fairness promised to tasks already 
existing

 When a task runs, the it runs is normalized to its weight, and is 
added to its vruntime

 CFS tracks a variable known as cfs_rq->min_vruntime
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Being nice

CFS changed the definition of how nice worked
 O(1) had liner values for nice

 CFS has a exponential scale

 Nice
0
 = 1024

 Nice
i-1

 = 1.25Nice
i

Time slice dependent on weight
Weight dependent on nice
Therefore, nice has a much stronger effect on time slices now.
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Some basic definitions

We have tasks Ti of weight wi running on CPU Pj such that its 
runqueue has weight

 Each task gets w
i
/rw

j
 runtime

A task can be a supertask with weight w
i 
with subtasks spread 

across every CPU
 Gives rise to the concept of shares, which is per CPU weight of the 

 supertask
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Some basic definitions

Another concept
 Task weight as viewed from the root group

 Which gives rise to
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Sched Features

Some key features,
NEW_FAIR_SLEEPERS: Provides a bonus to tasks that just wake 

up. 
NORMALIZED_SLEEPERS: Normalizes the aforementioned bonus
START_DEBIT: Demotes a newly forked task to the right of the 

runqueue
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Distributed Load Balancing

Wake Affine
 Requires precise re-calculation

– Not good!

 We know,

 So we add in a delta

 Express s'-s as a function of delta(w)
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