
© 2008 IBM 
Corporation

IBM Linux Technology Center

The Linux Scheduler, today and looking forward

Dhaval Giani
dhaval@linux.vnet.ibm.com



IBM Linux Technology Center

© 2008 IBM Corporation

Agenda

Introduction
Old Scheduler
Need for the new scheduler
CFS
Group scheduling
Load Balancing
Future



IBM Linux Technology Center

© 2008 IBM Corporation

The O(1) Scheduler

Known as the ultra scalable scheduler
The typical scheduling operations were O(1)

 enqueue

 dequeue

Used rotating priority arrays
Basically a Weighted Round Robin scheduler

 Used nice values for determining time slice

 Used two arrays, active and expired.

– Task finishes its timeslice and goes to the expired array

– When active is empty, the arrays are exchanged and expired 
becomes active and active, expired



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

O(1) had problems



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

O(1) had problems
 Determinism

– Was not

– Erratic scheduling patterns



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

O(1) had problems
 Determinism

– Was not

– Erratic scheduling patterns

 Runtime Accounting

– Was statistical

– Or too coarse



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems

– Similar workloads finish at varying times. Not good!



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems

– Similar workloads finish at varying times. Not good!

 Desktop experience



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems

– Similar workloads finish at varying times. Not good!

 Desktop experience

– Desktop Applications,

• Sleep long

• Short time on CPU



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems

– Similar workloads finish at varying times. Not good!

 Desktop experience

– Desktop Applications,

• Sleep long

• Short time on CPU

– Need to get CPU fast

• Otherwise noticeable effects, for example, audio stutters



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel
Moved from priority arrays to time based queues



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel
Moved from priority arrays to time based queues
Fairness

 Equal bandwidth for same priority

 Provided over __sched_period()



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel
Moved from priority arrays to time based queues
Fairness

 Equal bandwidth for same priority

 Provided over __sched_period()

Uses an RB Tree to implement the queue
 Uses vruntime as its index

 vruntime is weight proportional runtime

– That means heavier tasks run for longer and get charged lesser



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel
Moved from priority arrays to time based queues
Fairness

 Equal bandwidth for same priority

 Provided over __sched_period()

Uses an RB Tree to implement the queue
 Uses vruntime as its index

 vruntime is weight proportional runtime

– That means heavier tasks run for longer and get charged lesser

Nice is now exponential and not linear



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?
Two major “features”



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?
Two major “features”

 Shorter time slices: On an average, the CFS has shorter time slices.

– With the help of these, tasks which are further behind, get to run 
faster



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?
Two major “features”

 Shorter time slices: On an average, the CFS has shorter time slices.

– With the help of these, tasks which are further behind, get to run 
faster

 Wakeup behavior

– Typical interactive task -> sleeps for long, and then has a short burst

– Waiting for CPU, not good. Shows up as stutters in amarok

– So we queue up a newly woken up task to the head of the queue



IBM Linux Technology Center

© 2008 IBM Corporation

So how fair is the CFS?

Tried out massive_intr.c



IBM Linux Technology Center

© 2008 IBM Corporation

So how fair is the CFS?

Tried out massive_intr.c
Written by Satoru Takeuchi



IBM Linux Technology Center

© 2008 IBM Corporation

So how fair is the CFS?

Tried out massive_intr.c
Written by Satoru Takeuchi
Takes two arguments.

 Number of threads

 How long to run the program



IBM Linux Technology Center

© 2008 IBM Corporation

So how fair is the CFS?

Tried out massive_intr.c
Written by Satoru Takeuchi
Takes two arguments.

 Number of threads

 How long to run the program

Very simple
 Runs a thread for 8ms and then puts it to sleep for 1ms

 At the end of the time, it kills all the threads, and prints out the 
time each thread got



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation

Refining the CFS: Group Scheduling

Administrator finds it easier to control groups
 Database vs pids 4213,4214,4215...



IBM Linux Technology Center

© 2008 IBM Corporation

Refining the CFS: Group Scheduling

Administrator finds it easier to control groups
 Database vs pids 4213,4214,4215...

Control Groups provided the ability to group threads arbitrarily
 So, group “blog”, could consist of webserver and database threads



IBM Linux Technology Center

© 2008 IBM Corporation

Refining the CFS: Group Scheduling

Administrator finds it easier to control groups
 Database vs pids 4213,4214,4215...

Control Groups provided the ability to group threads arbitrarily
 So, group “blog”, could consist of webserver and database threads

Srivatsa Vaddagiri extended the CFS to provide group scheduling, 
which would give control over groups such as “blog”

 Merged in v2.6.24



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Entity

The CFS as well as the O(1) scheduler deal with just tasks



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Entity

The CFS as well as the O(1) scheduler deal with just tasks
Group scheduling requires scheduler to deal with “task groups”



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Entity

The CFS as well as the O(1) scheduler deal with just tasks
Group scheduling requires scheduler to deal with “task groups”
Enter sched_entity



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Entity

The CFS as well as the O(1) scheduler deal with just tasks
Group scheduling requires scheduler to deal with “task groups”
Enter sched_entity

 Helped with reuse of the code

 Can mean either a task or a task group. Basically something that 
can be “scheduled”

 Keeps track of vital scheduling data, such vruntime

 Scheduler core modified to work entities rather than tasks



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in

 Then, which task in the group selected in the previous step gets 
to run



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in

 Then, which task in the group selected in the previous step gets 
to run

Limited to just one level of grouping



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in

 Then, which task in the group selected in the previous step gets 
to run

Limited to just one level of grouping
Tasks in the “root” group are not really

 All tasks are grouped



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in

 Then, which task in the group selected in the previous step gets 
to run

Limited to just one level of grouping
Tasks in the “root” group are not really

 All tasks are grouped

 Those which are not grouped, form a group :-)



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair
Did not allow multiple levels of grouping



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair
Did not allow multiple levels of grouping
Take 2

 Changed the definition of fairness

– Remember, the root cgroup did not share bandwidth between the 
tasks and groups fairly



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair
Did not allow multiple levels of grouping
Take 2

 Changed the definition of fairness

– Remember, the root cgroup did not share bandwidth between the 
tasks and groups fairly

 At every level we choose an entity

– If it is a task, we run it

– If it is a group, we choose another entity within it



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair
Did not allow multiple levels of grouping
Take 2

 Changed the definition of fairness

– Remember, the root cgroup did not share bandwidth between the 
tasks and groups fairly

 At every level we choose an entity

– If it is a task, we run it

– If it is a group, we choose another entity within it

 Available since v2.6.26



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits
 Introduced in v2.6.25



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits
 Introduced in v2.6.25

 Trivial case for the group scheduler



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits
 Introduced in v2.6.25

 Trivial case for the group scheduler

 sched_rt_runtime_us -> Runtime Budget

 sched_rt_period_us -> The refresh rate



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits
 Introduced in v2.6.25

 Trivial case for the group scheduler

 sched_rt_runtime_us -> Runtime Budget

 sched_rt_period_us -> The refresh rate

 Prevents RT tasks from taking over the system



IBM Linux Technology Center

© 2008 IBM Corporation

RT Group Scheduling

sched_rt_entity introduced
 An abstraction similar to sched_entity



IBM Linux Technology Center

© 2008 IBM Corporation

RT Group Scheduling

sched_rt_entity introduced
 An abstraction similar to sched_entity

Two tunables
 rt_period_us

 rt_runtime_us



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended
 Global Scheduling: N CPUs, 1 Runqueue



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended
 Global Scheduling: N CPUs, 1 Runqueue

 Paritioned Scheduling: N CPUs, N Runqueues, no interaction 
between runqueues



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended
 Global Scheduling: N CPUs, 1 Runqueue

 Paritioned Scheduling: N CPUs, N Runqueues, no interaction 
between runqueues

 Distributed Scheduling: N CPUs, N Runqueues, loosely coupled to 
approximate global scheduling



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended
 Global Scheduling: N CPUs, 1 Runqueue

 Paritioned Scheduling: N CPUs, N Runqueues, no interaction 
between runqueues

 Distributed Scheduling: N CPUs, N Runqueues, loosely coupled to 
approximate global scheduling

Linux uses distributed scheduling



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Domains

Today's hardware
 Various sizes

 Various shapes

 In order to handle these, we build sched domains



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Domains

Today's hardware
 Various sizes

 Various shapes

 In order to handle these, we build sched domains

Domains group processors
 Based on various properties such as shared pipelines, shared 

caches



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Domains

Today's hardware
 Various sizes

 Various shapes

 In order to handle these, we build sched domains

Domains group processors
 Based on various properties such as shared pipelines, shared 

caches

CPUsets allow the user to carve up CPUs into sets
 Also used for load balancing decisions



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up

 Done using sched domains



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up

 Done using sched domains

 Compensates for the fact that memory accesses and migration to 
“far” CPUs is more expensive



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up

 Done using sched domains

 Compensates for the fact that memory accesses and migration to 
“far” CPUs is more expensive

Sched groups
 Basically the child domains of a domain



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up

 Done using sched domains

 Compensates for the fact that memory accesses and migration to 
“far” CPUs is more expensive

Sched groups
 Basically the child domains of a domain

 Pick the busiest group and try to pull from there as long as we 
don't pull too much



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication

 Weight of a task became proportional to the weight of its 
supertask



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication

 Weight of a task became proportional to the weight of its 
supertask

 But the supertask can be spread across multiple CPUs



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication

 Weight of a task became proportional to the weight of its 
supertask

 But the supertask can be spread across multiple CPUs

 That means, the weight of a task is dependent on other 
runqueues. 



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication

 Weight of a task became proportional to the weight of its 
supertask

 But the supertask can be spread across multiple CPUs

 That means, the weight of a task is dependent on other 
runqueues. 

 Bad for scalability



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task

Just one tiny problem
 How do we do it sanely?



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task

Just one tiny problem
 How do we do it sanely?

 That is, not touch other CPUs



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task

Just one tiny problem
 How do we do it sanely?

 That is, not touch other CPUs

Use sched domains



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task

Just one tiny problem
 How do we do it sanely?

 That is, not touch other CPUs

Use sched domains
 Re-compute shares as we walk up the tree.



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks

– Needs instant recalculation on arrival of task, otherwise shares will 
remain zero till we redistribute shares



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks

– Needs instant recalculation on arrival of task, otherwise shares will 
remain zero till we redistribute shares

– Expensive. Arrival and departure of tasks is quite frequent



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks

– Needs instant recalculation on arrival of task, otherwise shares will 
remain zero till we redistribute shares

– Expensive. Arrival and departure of tasks is quite frequent

– Never reduce shares to zero. Inflate shares of idle groups



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks

– Needs instant recalculation on arrival of task, otherwise shares will 
remain zero till we redistribute shares

– Expensive. Arrival and departure of tasks is quite frequent

– Never reduce shares to zero. Inflate shares of idle groups

– Has some short term unfairness, but not more than what was already 
present, due to rebalancing



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity

 Need to provide latency isolation



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity

 Need to provide latency isolation

Faster convergence to fairness for group scheduling



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity

 Need to provide latency isolation

Faster convergence to fairness for group scheduling
Looking at RT scheduling function, independent of PI



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity

 Need to provide latency isolation

Faster convergence to fairness for group scheduling
Looking at RT scheduling function, independent of PI

 Allows us to experiment with more advanced RT scheduling

 Possibly allow us to extend PI for SCHED_OTHER



IBM Linux Technology Center

© 2008 IBM Corporation

Thank You!

Questions?



IBM Linux Technology Center

© 2008 IBM Corporation

Legal Statement

This work represents the view of the authors and does not 
necessarily represent the view of IBM.

IBM is a registered trademark of International Business Machines 
Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trademarks 

or service marks of others.



IBM Linux Technology Center

© 2008 IBM Corporation

BACKUP



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Classes

Scheduler Classes, a definition,

An extensible hierarchy of scheduler modules 
which encapsulate scheduling policy details and are 
handled by the scheduler core without the core 
code assuming about them too much

Ingo Molnar

Essentially what he said, with a few custom changes :)



IBM Linux Technology Center

© 2008 IBM Corporation

The CFS
More vruntime love

Calculated as follows
 When a task forks, vruntime set so that it comes as the rightmost

– Ensures that it does not affect the fairness promised to tasks already 
existing

 When a task runs, the it runs is normalized to its weight, and is 
added to its vruntime

 CFS tracks a variable known as cfs_rq->min_vruntime



IBM Linux Technology Center

© 2008 IBM Corporation

Being nice

CFS changed the definition of how nice worked
 O(1) had liner values for nice

 CFS has a exponential scale

 Nice
0
 = 1024

 Nice
i-1

 = 1.25Nice
i

Time slice dependent on weight
Weight dependent on nice
Therefore, nice has a much stronger effect on time slices now.



IBM Linux Technology Center

© 2008 IBM Corporation

Some basic definitions

We have tasks Ti of weight wi running on CPU Pj such that its 
runqueue has weight

 Each task gets w
i
/rw

j
 runtime

A task can be a supertask with weight w
i 
with subtasks spread 

across every CPU
 Gives rise to the concept of shares, which is per CPU weight of the 

 supertask



IBM Linux Technology Center

© 2008 IBM Corporation

Some basic definitions

Another concept
 Task weight as viewed from the root group

 Which gives rise to



IBM Linux Technology Center

© 2008 IBM Corporation

Sched Features

Some key features,
NEW_FAIR_SLEEPERS: Provides a bonus to tasks that just wake 

up. 
NORMALIZED_SLEEPERS: Normalizes the aforementioned bonus
START_DEBIT: Demotes a newly forked task to the right of the 

runqueue



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing

Wake Affine
 Requires precise re-calculation

– Not good!

 We know,

 So we add in a delta

 Express s'-s as a function of delta(w)


	The Linux Scheduler, today and looking forward
	Agenda
	The O(1) Scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	The Completely Fair Scheduler or just the CFS
	The Completely Fair Scheduler or just the CFS
	The Completely Fair Scheduler or just the CFS
	The Completely Fair Scheduler or just the CFS
	The Completely Fair Scheduler or just the CFS
	Interactivity
	Interactivity
	Interactivity
	Interactivity
	So how fair is the CFS?
	So how fair is the CFS?
	So how fair is the CFS?
	So how fair is the CFS?
	Graph 1
	Page 28
	Refining the CFS: Group Scheduling
	Refining the CFS: Group Scheduling
	Refining the CFS: Group Scheduling
	Scheduler Entity
	Scheduler Entity
	Scheduler Entity
	Scheduler Entity
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Page 42
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Page 48
	Page 49
	Real Time
	Real Time
	Real Time
	Real Time
	Real Time
	Real Time
	Real Time
	RT Group Scheduling
	RT Group Scheduling
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Scheduler Domains
	Scheduler Domains
	Scheduler Domains
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	The Future
	The Future
	The Future
	The Future
	The Future
	The Future
	The Future
	Thank You!
	Legal Statement
	BACKUP
	Scheduler Classes
	The CFS
	Being nice
	Some basic definitions
	Some basic definitions
	Sched Features
	Distributed Load Balancing

