
© 2008 IBM 
Corporation

IBM Linux Technology Center

The Linux Scheduler, today and looking forward

Dhaval Giani
dhaval@linux.vnet.ibm.com



IBM Linux Technology Center

© 2008 IBM Corporation

Agenda

Introduction
Old Scheduler
Need for the new scheduler
CFS
Group scheduling
Load Balancing
Future



IBM Linux Technology Center

© 2008 IBM Corporation

The O(1) Scheduler

Known as the ultra scalable scheduler
The typical scheduling operations were O(1)

 enqueue

 dequeue

Used rotating priority arrays
Basically a Weighted Round Robin scheduler

 Used nice values for determining time slice

 Used two arrays, active and expired.

– Task finishes its timeslice and goes to the expired array

– When active is empty, the arrays are exchanged and expired 
becomes active and active, expired



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

O(1) had problems



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

O(1) had problems
 Determinism

– Was not

– Erratic scheduling patterns



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

O(1) had problems
 Determinism

– Was not

– Erratic scheduling patterns

 Runtime Accounting

– Was statistical

– Or too coarse



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems

– Similar workloads finish at varying times. Not good!



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems

– Similar workloads finish at varying times. Not good!

 Desktop experience



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems

– Similar workloads finish at varying times. Not good!

 Desktop experience

– Desktop Applications,

• Sleep long

• Short time on CPU



IBM Linux Technology Center

© 2008 IBM Corporation

Need for a new scheduler

Led to problems
 Fair allocation

– Did not provide equal bandwidth to tasks at same priority esp on 
SMP systems

– Similar workloads finish at varying times. Not good!

 Desktop experience

– Desktop Applications,

• Sleep long

• Short time on CPU

– Need to get CPU fast

• Otherwise noticeable effects, for example, audio stutters



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel
Moved from priority arrays to time based queues



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel
Moved from priority arrays to time based queues
Fairness

 Equal bandwidth for same priority

 Provided over __sched_period()



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel
Moved from priority arrays to time based queues
Fairness

 Equal bandwidth for same priority

 Provided over __sched_period()

Uses an RB Tree to implement the queue
 Uses vruntime as its index

 vruntime is weight proportional runtime

– That means heavier tasks run for longer and get charged lesser



IBM Linux Technology Center

© 2008 IBM Corporation

The Completely Fair Scheduler or just the CFS

Written by Ingo Molnar, and merged in v2.6.23 of the kernel
Moved from priority arrays to time based queues
Fairness

 Equal bandwidth for same priority

 Provided over __sched_period()

Uses an RB Tree to implement the queue
 Uses vruntime as its index

 vruntime is weight proportional runtime

– That means heavier tasks run for longer and get charged lesser

Nice is now exponential and not linear



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?
Two major “features”



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?
Two major “features”

 Shorter time slices: On an average, the CFS has shorter time slices.

– With the help of these, tasks which are further behind, get to run 
faster



IBM Linux Technology Center

© 2008 IBM Corporation

Interactivity

Interactivity improved, but how?
Two major “features”

 Shorter time slices: On an average, the CFS has shorter time slices.

– With the help of these, tasks which are further behind, get to run 
faster

 Wakeup behavior

– Typical interactive task -> sleeps for long, and then has a short burst

– Waiting for CPU, not good. Shows up as stutters in amarok

– So we queue up a newly woken up task to the head of the queue



IBM Linux Technology Center

© 2008 IBM Corporation

So how fair is the CFS?

Tried out massive_intr.c



IBM Linux Technology Center

© 2008 IBM Corporation

So how fair is the CFS?

Tried out massive_intr.c
Written by Satoru Takeuchi



IBM Linux Technology Center

© 2008 IBM Corporation

So how fair is the CFS?

Tried out massive_intr.c
Written by Satoru Takeuchi
Takes two arguments.

 Number of threads

 How long to run the program



IBM Linux Technology Center

© 2008 IBM Corporation

So how fair is the CFS?

Tried out massive_intr.c
Written by Satoru Takeuchi
Takes two arguments.

 Number of threads

 How long to run the program

Very simple
 Runs a thread for 8ms and then puts it to sleep for 1ms

 At the end of the time, it kills all the threads, and prints out the 
time each thread got



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation

Refining the CFS: Group Scheduling

Administrator finds it easier to control groups
 Database vs pids 4213,4214,4215...



IBM Linux Technology Center

© 2008 IBM Corporation

Refining the CFS: Group Scheduling

Administrator finds it easier to control groups
 Database vs pids 4213,4214,4215...

Control Groups provided the ability to group threads arbitrarily
 So, group “blog”, could consist of webserver and database threads



IBM Linux Technology Center

© 2008 IBM Corporation

Refining the CFS: Group Scheduling

Administrator finds it easier to control groups
 Database vs pids 4213,4214,4215...

Control Groups provided the ability to group threads arbitrarily
 So, group “blog”, could consist of webserver and database threads

Srivatsa Vaddagiri extended the CFS to provide group scheduling, 
which would give control over groups such as “blog”

 Merged in v2.6.24



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Entity

The CFS as well as the O(1) scheduler deal with just tasks



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Entity

The CFS as well as the O(1) scheduler deal with just tasks
Group scheduling requires scheduler to deal with “task groups”



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Entity

The CFS as well as the O(1) scheduler deal with just tasks
Group scheduling requires scheduler to deal with “task groups”
Enter sched_entity



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Entity

The CFS as well as the O(1) scheduler deal with just tasks
Group scheduling requires scheduler to deal with “task groups”
Enter sched_entity

 Helped with reuse of the code

 Can mean either a task or a task group. Basically something that 
can be “scheduled”

 Keeps track of vital scheduling data, such vruntime

 Scheduler core modified to work entities rather than tasks



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in

 Then, which task in the group selected in the previous step gets 
to run



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in

 Then, which task in the group selected in the previous step gets 
to run

Limited to just one level of grouping



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in

 Then, which task in the group selected in the previous step gets 
to run

Limited to just one level of grouping
Tasks in the “root” group are not really

 All tasks are grouped



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Take 1
 Scheduling a two step decision

 First we choose which group to schedule in

 Then, which task in the group selected in the previous step gets 
to run

Limited to just one level of grouping
Tasks in the “root” group are not really

 All tasks are grouped

 Those which are not grouped, form a group :-)



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair
Did not allow multiple levels of grouping



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair
Did not allow multiple levels of grouping
Take 2

 Changed the definition of fairness

– Remember, the root cgroup did not share bandwidth between the 
tasks and groups fairly



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair
Did not allow multiple levels of grouping
Take 2

 Changed the definition of fairness

– Remember, the root cgroup did not share bandwidth between the 
tasks and groups fairly

 At every level we choose an entity

– If it is a task, we run it

– If it is a group, we choose another entity within it



IBM Linux Technology Center

© 2008 IBM Corporation

Group Scheduling

Not really fair
Did not allow multiple levels of grouping
Take 2

 Changed the definition of fairness

– Remember, the root cgroup did not share bandwidth between the 
tasks and groups fairly

 At every level we choose an entity

– If it is a task, we run it

– If it is a group, we choose another entity within it

 Available since v2.6.26



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits
 Introduced in v2.6.25



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits
 Introduced in v2.6.25

 Trivial case for the group scheduler



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits
 Introduced in v2.6.25

 Trivial case for the group scheduler

 sched_rt_runtime_us -> Runtime Budget

 sched_rt_period_us -> The refresh rate



IBM Linux Technology Center

© 2008 IBM Corporation

Real Time

The highest priority scheduling class
Implements the POSIX standard

 SCHED_FIFO

 SCHED_RR

RT Hard limits
 Introduced in v2.6.25

 Trivial case for the group scheduler

 sched_rt_runtime_us -> Runtime Budget

 sched_rt_period_us -> The refresh rate

 Prevents RT tasks from taking over the system



IBM Linux Technology Center

© 2008 IBM Corporation

RT Group Scheduling

sched_rt_entity introduced
 An abstraction similar to sched_entity



IBM Linux Technology Center

© 2008 IBM Corporation

RT Group Scheduling

sched_rt_entity introduced
 An abstraction similar to sched_entity

Two tunables
 rt_period_us

 rt_runtime_us



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended
 Global Scheduling: N CPUs, 1 Runqueue



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended
 Global Scheduling: N CPUs, 1 Runqueue

 Paritioned Scheduling: N CPUs, N Runqueues, no interaction 
between runqueues



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended
 Global Scheduling: N CPUs, 1 Runqueue

 Paritioned Scheduling: N CPUs, N Runqueues, no interaction 
between runqueues

 Distributed Scheduling: N CPUs, N Runqueues, loosely coupled to 
approximate global scheduling



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing

All what we talked about till now, was with UP in mind
Linux can run on machines with 4096 CPUs

 At least according to theory

Scheduler needs to be extended
 Global Scheduling: N CPUs, 1 Runqueue

 Paritioned Scheduling: N CPUs, N Runqueues, no interaction 
between runqueues

 Distributed Scheduling: N CPUs, N Runqueues, loosely coupled to 
approximate global scheduling

Linux uses distributed scheduling



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Domains

Today's hardware
 Various sizes

 Various shapes

 In order to handle these, we build sched domains



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Domains

Today's hardware
 Various sizes

 Various shapes

 In order to handle these, we build sched domains

Domains group processors
 Based on various properties such as shared pipelines, shared 

caches



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Domains

Today's hardware
 Various sizes

 Various shapes

 In order to handle these, we build sched domains

Domains group processors
 Based on various properties such as shared pipelines, shared 

caches

CPUsets allow the user to carve up CPUs into sets
 Also used for load balancing decisions



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up

 Done using sched domains



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up

 Done using sched domains

 Compensates for the fact that memory accesses and migration to 
“far” CPUs is more expensive



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up

 Done using sched domains

 Compensates for the fact that memory accesses and migration to 
“far” CPUs is more expensive

Sched groups
 Basically the child domains of a domain



IBM Linux Technology Center

© 2008 IBM Corporation

Load Balancing in SCHED_OTHER

The basic idea is to balance any two runqueues
 Converge to a global balance

Balance “near” runqueues more frequently and slow down as we 
go up

 Done using sched domains

 Compensates for the fact that memory accesses and migration to 
“far” CPUs is more expensive

Sched groups
 Basically the child domains of a domain

 Pick the busiest group and try to pull from there as long as we 
don't pull too much



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication

 Weight of a task became proportional to the weight of its 
supertask



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication

 Weight of a task became proportional to the weight of its 
supertask

 But the supertask can be spread across multiple CPUs



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication

 Weight of a task became proportional to the weight of its 
supertask

 But the supertask can be spread across multiple CPUs

 That means, the weight of a task is dependent on other 
runqueues. 



IBM Linux Technology Center

© 2008 IBM Corporation

SMP Nice
Introduced by Peter Williams, ~2.6.18
Load Balancer introduced to the concept of nice values

 Fairness maintained across CPUs

 Balance run queues based on weight and not number of tasks

Group SMP Nice
 Significant complication

 Weight of a task became proportional to the weight of its 
supertask

 But the supertask can be spread across multiple CPUs

 That means, the weight of a task is dependent on other 
runqueues. 

 Bad for scalability



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task

Just one tiny problem
 How do we do it sanely?



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task

Just one tiny problem
 How do we do it sanely?

 That is, not touch other CPUs



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task

Just one tiny problem
 How do we do it sanely?

 That is, not touch other CPUs

Use sched domains



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Group Balancing

Since we have a view of the tasks weight from the root group, we 
can balance on the weight of the root's runqueue itself

 Just take care that we account only the normalized weight of the 
task

Just one tiny problem
 How do we do it sanely?

 That is, not touch other CPUs

Use sched domains
 Re-compute shares as we walk up the tree.



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks

– Needs instant recalculation on arrival of task, otherwise shares will 
remain zero till we redistribute shares



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks

– Needs instant recalculation on arrival of task, otherwise shares will 
remain zero till we redistribute shares

– Expensive. Arrival and departure of tasks is quite frequent



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks

– Needs instant recalculation on arrival of task, otherwise shares will 
remain zero till we redistribute shares

– Expensive. Arrival and departure of tasks is quite frequent

– Never reduce shares to zero. Inflate shares of idle groups



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing
Few corner cases

 Since we do only integer divisions, we can lose shares due to 
rounding errors

– Solved by ensuring, the weight at the top domain will be the sum of 
the shares

– Will limit the loses

 A boot strap problem – A group with no tasks

– Needs instant recalculation on arrival of task, otherwise shares will 
remain zero till we redistribute shares

– Expensive. Arrival and departure of tasks is quite frequent

– Never reduce shares to zero. Inflate shares of idle groups

– Has some short term unfairness, but not more than what was already 
present, due to rebalancing



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity

 Need to provide latency isolation



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity

 Need to provide latency isolation

Faster convergence to fairness for group scheduling



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity

 Need to provide latency isolation

Faster convergence to fairness for group scheduling
Looking at RT scheduling function, independent of PI



IBM Linux Technology Center

© 2008 IBM Corporation

The Future

The single runqueue approach
 Group scheduling has a hierarchical task selection

– Not good for interactivity

 Need to provide latency isolation

Faster convergence to fairness for group scheduling
Looking at RT scheduling function, independent of PI

 Allows us to experiment with more advanced RT scheduling

 Possibly allow us to extend PI for SCHED_OTHER



IBM Linux Technology Center

© 2008 IBM Corporation

Thank You!

Questions?



IBM Linux Technology Center

© 2008 IBM Corporation

Legal Statement

This work represents the view of the authors and does not 
necessarily represent the view of IBM.

IBM is a registered trademark of International Business Machines 
Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trademarks 

or service marks of others.



IBM Linux Technology Center

© 2008 IBM Corporation

BACKUP



IBM Linux Technology Center

© 2008 IBM Corporation

Scheduler Classes

Scheduler Classes, a definition,

An extensible hierarchy of scheduler modules 
which encapsulate scheduling policy details and are 
handled by the scheduler core without the core 
code assuming about them too much

Ingo Molnar

Essentially what he said, with a few custom changes :)



IBM Linux Technology Center

© 2008 IBM Corporation

The CFS
More vruntime love

Calculated as follows
 When a task forks, vruntime set so that it comes as the rightmost

– Ensures that it does not affect the fairness promised to tasks already 
existing

 When a task runs, the it runs is normalized to its weight, and is 
added to its vruntime

 CFS tracks a variable known as cfs_rq->min_vruntime



IBM Linux Technology Center

© 2008 IBM Corporation

Being nice

CFS changed the definition of how nice worked
 O(1) had liner values for nice

 CFS has a exponential scale

 Nice
0
 = 1024

 Nice
i-1

 = 1.25Nice
i

Time slice dependent on weight
Weight dependent on nice
Therefore, nice has a much stronger effect on time slices now.



IBM Linux Technology Center

© 2008 IBM Corporation

Some basic definitions

We have tasks Ti of weight wi running on CPU Pj such that its 
runqueue has weight

 Each task gets w
i
/rw

j
 runtime

A task can be a supertask with weight w
i 
with subtasks spread 

across every CPU
 Gives rise to the concept of shares, which is per CPU weight of the 

 supertask



IBM Linux Technology Center

© 2008 IBM Corporation

Some basic definitions

Another concept
 Task weight as viewed from the root group

 Which gives rise to



IBM Linux Technology Center

© 2008 IBM Corporation

Sched Features

Some key features,
NEW_FAIR_SLEEPERS: Provides a bonus to tasks that just wake 

up. 
NORMALIZED_SLEEPERS: Normalizes the aforementioned bonus
START_DEBIT: Demotes a newly forked task to the right of the 

runqueue



IBM Linux Technology Center

© 2008 IBM Corporation

Distributed Load Balancing

Wake Affine
 Requires precise re-calculation

– Not good!

 We know,

 So we add in a delta

 Express s'-s as a function of delta(w)


	The Linux Scheduler, today and looking forward
	Agenda
	The O(1) Scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	Need for a new scheduler
	The Completely Fair Scheduler or just the CFS
	The Completely Fair Scheduler or just the CFS
	The Completely Fair Scheduler or just the CFS
	The Completely Fair Scheduler or just the CFS
	The Completely Fair Scheduler or just the CFS
	Interactivity
	Interactivity
	Interactivity
	Interactivity
	So how fair is the CFS?
	So how fair is the CFS?
	So how fair is the CFS?
	So how fair is the CFS?
	Graph 1
	Page 28
	Refining the CFS: Group Scheduling
	Refining the CFS: Group Scheduling
	Refining the CFS: Group Scheduling
	Scheduler Entity
	Scheduler Entity
	Scheduler Entity
	Scheduler Entity
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Page 42
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Group Scheduling
	Page 48
	Page 49
	Real Time
	Real Time
	Real Time
	Real Time
	Real Time
	Real Time
	Real Time
	RT Group Scheduling
	RT Group Scheduling
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Scheduler Domains
	Scheduler Domains
	Scheduler Domains
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	Load Balancing in SCHED_OTHER
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	SMP Nice
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Group Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	Distributed Load Balancing
	The Future
	The Future
	The Future
	The Future
	The Future
	The Future
	The Future
	Thank You!
	Legal Statement
	BACKUP
	Scheduler Classes
	The CFS
	Being nice
	Some basic definitions
	Some basic definitions
	Sched Features
	Distributed Load Balancing

