Latency Reducing TCP modifications for thin-stream interactive applications

Andreas Petlund / Kristian Evensen Simula Research Laboratory / University of Oslo

Linux–Kongress 2008 - Hamburg - Germany

A long time ago in a game-company far, far away...

- Anarchy Online MMORPG server side packet trace from Funcom (171 streams, 1 hour).
- Extreme max. values for latency.
- Most of the streams experienced extreme (game degrading) latencies during the dump period.
- Occasional game ruining latencies (3-4% of clients).

Max delay values for Anarchy Online

Hamburg - 10/10/2008

3

TCP and thin streams

- High interarrival time.
- Small packets.
- Optional kernel mechanisms that affect thin streams:
 - Nagle: Wait for small packets to assimilate.
 - Delayed ACKs: Save ACKs by waiting for more segments to arrive.
- Both of these increase latency for thin streams.

Examples of thin-stream applications

	payload size (Bytes)			packet interarrival time (ms)						a	/g. ba	ndwidth	
application								percentiles			requirement		
(platform)	average	min	max	verage	median	min	max	1%	99%		pps)	(bps)	
World of Warcraft	26	6	1228	314	133	0	14855	0	3785		3.185	2046	
Anarchy Online	98	8	1333	632	449	7	17032	83	4195		l.582	2168	
Age of Conan	80	5	1460	86	57	0	1375	24	386	1	l.628	12375	
BZFlag [†]	30	4	1448	24	0	0	540	0	151	4	l.667	31370	
Casa (sensor network)	175	93	572	7287	307	305	29898	305	29898).137	269	
Windows remote desktop	111	8	1417	318	159	1	12254	2	3892		3.145	4497	
Skype (2 users) [†]	236	14	1267	34	40	0	1671	4	80	2	9.412	69296	
SSH text session	48	16	752	323	159	0	76610	32	3616		3.096	2825	
+													

[†] Application using TCP fallback due to UDP being blocked by a firewall.

Analysis of TCP for thin streams

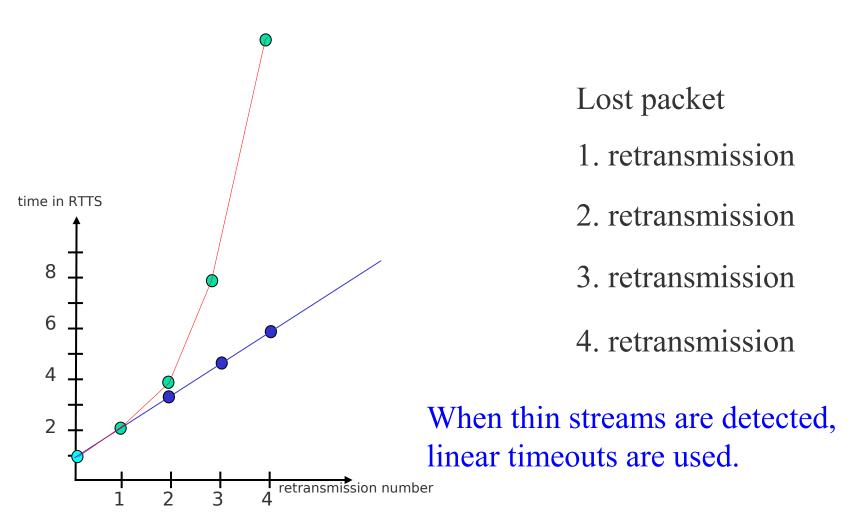
• Linux TCP flavours (2.6.16) analysed:

Griwodz et al.: "The fun of using TCP for an MMORPG" (2006)

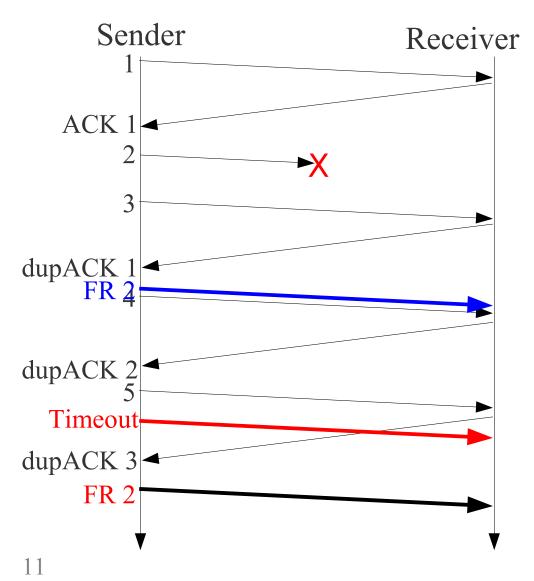
- New Reno -SACK -DSACK -FACK
- DSACK+FACK -Westwood -BIC -Vegas
- Poor overall performance for interactive thin streams with all tested flavours.
 - New Reno best "on average" for thinstream latency.

It's all about timeouts

- Methods of triggering retransmissions:
 - Timeout
 -Fast retransmit
- 3 dupACKs needed to trigger a fast retransmission.
- Thin streams mostly stay below 1 packet per RTT.
- In effect for thin streams: "Only" retransmissions by timeout.

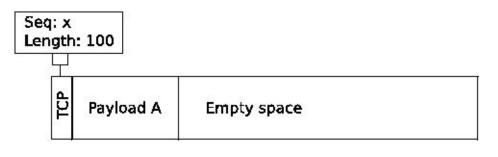

Thin-stream modifications

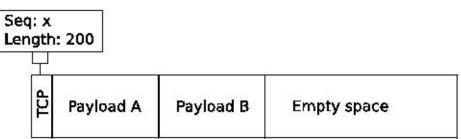
- We have developed ways to improve latency for the thin-stream scenario without affecting other streams.
- Detection:
 - Packets in flight (PIF) <= 4</p>
 - size_unacked(p1) + size(p2) < MSS</pre>
- Modifications triggered <u>only</u> when these conditions are met.


IOCTL enabling of mechanisms

- Activate mechanism on a per-stream basis using socket options.
- Options:
 - TCP_THIN_RM_EXPB
 - TCP_THIN_DUPACK
 - TCP_THIN_RDB
- The dynamic triggering of the thin-stream mechanism will then be active.

Exponential backoff

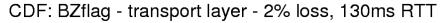

Fast retransmit with thin-streams

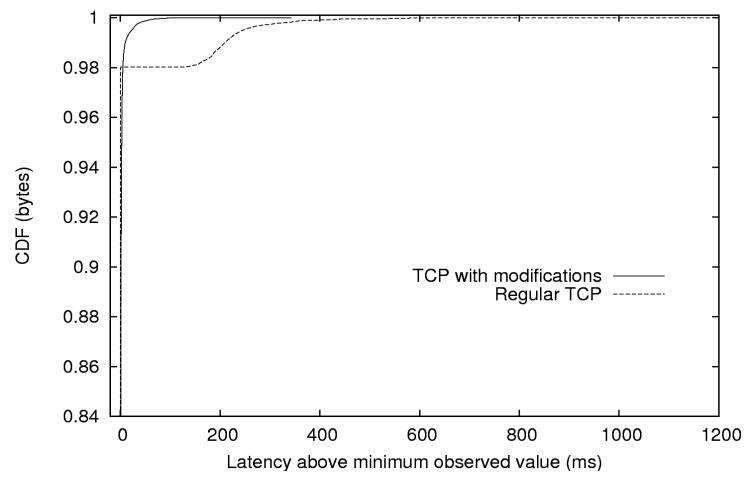


- Thin streams often have < 1 packet per RTT.
- Before 3 dupACKs has arrived, a timeout will already have triggered a retransmission.
- When thin streams are detected, we trigger a FR after one dupACK.

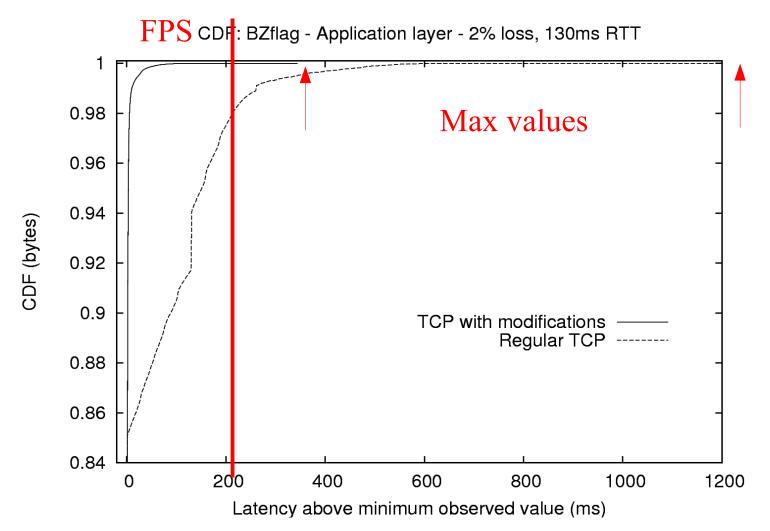
Redundant data bundling

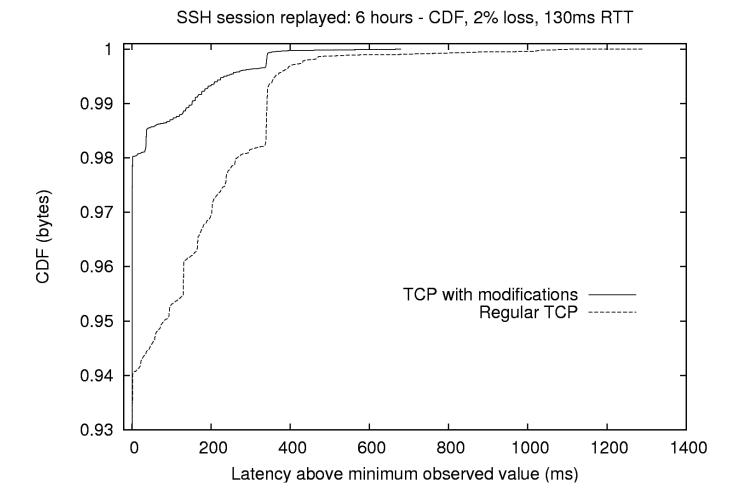
- Preempting the experience of loss.
- Introduces
 inherent
 redundancy.
- redundancy. Seq Leng - Will not increase number of sent packets.




Applicability of modifications

	Small Packets	Large Packets
High IA	<i>Typical thin stream</i> RDB + Retransmission modifications	Rare occurrences Retransmission modifications
Low IA	RDB	<i>Thick</i> No modifications


Test results: BZFlag – Transport layer



Test results: BZFlag – Application layer

Test results: SSH text session

Considerations

- Fairness:
 - RDB will get a fairness advantage due to absence of timeouts.
 - For high RTTs and (relatively) low IATs, the MSS <u>will</u> fill up.
 - Regulate bundling by introducing a byte limit: – Sysctl: net.ipv4.tcp_rdb_max_bundle_bytes
- Implementation issues:
 - Retransmission modifications do only small changes to existing code.
 - RDB more complex.

Linux support for interactive thin streams

- The typical thin stream is an interactive application.
- Games for Linux is the new frontier.
 - Game servers: Benefit from stand-alone patching.
 - Game clients: Two-way benefit if generally included.
- Financial applications with real-time demands.
- Peer to peer interactive applications on the rise.

..fuel to the fire..

- There may be other ways to "help" interactive thin streams.
- If PIF <=4, auto-disable Nagle's algorithm
- :(Takes the responsibility off the shoulders of ignorant developers.
- :) Will benefit interactive applications which very often show these properties
- Such changes always spawn heated discussions on netdev :)

Conclusions

- Thin streams are very often created by time-critical (or interactive) applications.
- Small changes can be made to improve latency for thin streams without affecting other streams.
- Using thin-stream modifications could mean the difference between a wellrunning application and a ruined experience.

Questions?

Thin

VS

Thick