
„DRBD 9“

Linux Storage Replication

Lars Ellenberg

LINBIT HA Solutions GmbH
Vienna, Austria



What this talk is about

• What is replication

• Why block level replication

• Why replication

• What do we have to deal with

• How we are dealing with it now

• Where development is headed



Linux Storage Replication

Replication Basics

DRBD 8 Overview

DM-Replicator

DRBD 9

Other Ideas



Linux Storage Replication

Replication Basics

DRBD 8 Overview

DM-Replicator

DRBD 9

Other Ideas



Standalone Servers

Node 1 Node 2 Node 3

• No System Level Redundancy

• Vulnerable to FailuresImportant Systems



Application Level Replication

Node 1 Node 3

• Special Purpose Solution

• Difficult to add to an application 
after the fact

Important Systems

AppApp



Filesystem Level Replication

Node 1 Node 3

• Special Filesystem

• Complex

• Replicate on dirty?

• ... on writeout?

• ... on close?

• What about metadata?

• Resilience?

Important Systems

FSFS



Shared Storage/SAN

Shared Storage (SAN)

Shared data

Node 1 Node 2 Node 3

• No Storage Redundancy

Important Systems

FC, iSCSI



Shared Storage/SAN

Replication capable SAN

Shared data

Node 1 Node 2 Node 3

• Application agnostic

• Expensive Hardware

• Expensive License costs

Important Systems

FC, iSCSI

Shared Storage/SAN

Replica



Cluster

Block Level Replication

Node 1 Node 2DRBD

• Storage Redundancy

• Application Agnostic

• Generic

• Flexible



Storage Cluster

SAN Replacement Storage Cluster

Node 1 Node 2DRBD

Node 1 Node 2 Node 3

iSCSI

• Storage Redundancy

• Application Agnostic

• Generic

• Flexible

Important Systems



Linux Storage Replication

Replication Basics

DRBD 8 Overview

DM-Replicator

DRBD 9

Other Ideas



How it works: Normal operation

Data blocks

W
r

it
e

 I
/

O

Data blocks

Replicate Acknowledge

Primary Node

Secondary Node

R
e

a
d

 I
/

OApplication

R
e

a
d

 I
/

O

W
ri

t
e

 I
/

O

Replicate Acknowledge



How it works: Primary Node Failure

W
r

it
e

 I
/

O

Data blocks

Replicate Acknowledge

Primary Node

Secondary Node

R
e

a
d

 I
/

OApplication

R
e

a
d

 I
/

O

Primary Node

W
r

it
e

 I
/

O

R
e

a
d

 I
/

O

Data blocksApplication

R
e

a
d

 I
/

O



Offline Node

How it works: Secondary Node Failure

Data blocks

W
r

it
e

 I
/

O

Data blocks

Primary Node

R
e

a
d

 I
/

OApplication

R
e

a
d

 I
/

O

W
ri

t
e

 I
/

O



How it works: Secondary Node Recovery

Data blocks

Data blocks

Resync Acknowledge

Primary Node

Secondary Node

R
e

a
d

 I
/

OApplication

R
e

a
d

 I
/

O

Resync Acknowledge



What if ...

• We want additional replica for desaster recovery

- we can stack DRBD

• The latency to the remote site is too high

- stack DRBD for local redundancy,
run the high latency link in asynchronous mode,
add buffering and compressing with DRBD proxy

• Primary node/site fails during resync

- Snapshot before becoming sync target



It Works.

• Though it may be ugly.

• Can we do better?



Linux Storage Replication

Replication Basics

DRBD 8 Overview

DM-Replicator

DRBD 9

Other Ideas



Generic Replication Framework

• Track Data changes

- Persistent (on Disk) Data Journal

- “global” write ordering over multiple volumes

- Fallback to bitmap based change tracking

• Multi-node.

- many “site links” feed from the journal

• Flexible Policy

- When to report completion to upper layers

- (when to) do fallback to bitmap



Current „default“ reference implementation

• Only talks to “dumb” block devices

• “Software RAID1”
allowing some legs to lag behind

• No concept of “data generation”

• Cannot communicate metadata

• Not directly suitable for failover solutions

• Primary objective: cut down on “hardware” replication licence 
costs, replicate SAN-LUNs in software
to desaster recovery sites.



DRBD 9

Replication Basics

DRBD 8 Overview

DM-Replicator

DRBD 9

Other Ideas



Replicating smarter, asynchronous

• Detect and discard overwrites

- shipped batches must be atomic

• Compress

• Compress XOR-diff

• Side effects

- Can be undone

- Checkpointing of generic block data

- Point in time recovery



Replicating smarter, synchronous

• Identify a certain Data Set Version

• Start from scratch

• continuous stream of changes

• Data Generation Tags, dagtag

- which clone (node name)

- which volume (label)

- who modified it last (committer)

- modification date (position in the change stream)



Colorful Replication Stream

Primary Node Changes

atomic batch
discarding
overwrites

Data Set Divergence



Advantages of the Data Generation Tag scheme

• On handshake, exchange dagtags

- Trivially see who has the best data
even on primary site failure
with multiple secondaries possibly lagging behind

• Communicate dagtags with atomic (compressed, xor-diff) 
batches

- allows for daisy chaining

• keep dagtag and batch payload

- Checkpointing: just store the dagtag.



DRBD 9

Replication Basics

DRBD 8 Overview

DM-Replicator

DRBD 9

Other Ideas



Stretched cluster file systems?

• Multiple branch offices

• One cluster filesystem

• Latency would make unusable

• But when
- keeping leases and
- inserting lock requests into the replication data stream
- while having mostly self-contained access

in the branch offices

• It may feel like low latency most of the time, with occasional 
longer delays on access.

• Tell me why I'm wrong :-)



Comments?

lars@linbit.com

http://www.linbit.com
http://www.drbd.org

If you think you can help,

we are Hireing!

mailto:lars@linbit.com
http://www.linbit.com/
http://www.drbd.org/

