
 1

Linux Kongress 2008

Scalable and Practical OpenSource
Embedded Systems

 2

History

1
Embedded Linux 1998-2008

 3

Back Story and Scope

• Embedded Linux emerged in about 1998
• Widely deployed, well understood and mature
• noMMU uClinux and MMU Linux 2.0-2.6
• Everything from DVD player to Cell Phones

• No Unified “Distribution”
• Very Portable

 4

 Linux in Embedded Systems

• Functionality Fit
• Networking.

• Very large footprint
• compared to a Commercial RTOS

• Potential to do much more
• Single function devices, Yes
• Platform Capability

 5

Commercial Systems

• Everyone builds their own
• Usually provided by the Silicon Vendor

• Functionality is remarkably similar
• Classes of device and a few major Apps

• Impossible to count, or even know where used
• We think in 100s of Millions units
• Largest Linux installed base by far

• Changed Embedded Systems Engineering

 6

Common Design Practice

From Reference Design...
• Provided Cookie Cutter
• No product customization
• Vendor doesn't know!

• Fixes, GPL, Quality....
• Forget it!

From OpenSource...

• Huge Barrier

• No consistent process

• Engineering commitment

•

• Mailing List...

• “How do I make my
project, I have 2 days so
tell me what I need and I
really need you guys to help
me right now so send it to my
email I don't read this mailing lis

 7

Scalable Open Systems

2
Next Generation Platforms

Hardware and Software

 8

Open Systems Objectives

• Freedom for the Engineer
• Control of the Platform and Application
• Code Freedom: To build what you need
• Design Freedom: To build it the way you want

• Freedom for the User
• Freedom of Use: Make product do what you need
• Code Freedom: Change the product

• Freedom for the Community
• To Benefit from Past Works

 9

Design Examples

• Examples of Project Scope:
• Phone
• DVR
• VoIP VPN Firewall Router
• NAS SetTopBox

• Examples of Projects out of Scope
• Web Server Appliance
• ...

 10

Software Stacks

• Well Understood Practice*
• Upstream projects have this well covered
• Standard POSIX like environment
• Not necessary to go into here

• Standard but limited Application Packages
• Functionality driven, not “Kitchen Sink”

* Linux is what comes after C -Kenneth Albanowski

 11

Portability

• Minimum Requirements for Kernel Support
• 32 or 64 Bit Address Space and Data types
• Periodic Interrupt
• GCC

• About 2Mbyte memory

• Only the memory requirement is unique
• Most modern SoC has a capable CPU

 12

CPU Families
• All Standard Families are Supported

• ARM series, MIPS, SH, m68k/Coldfire

• Architecture Specific code
• In Kernel

• setup, entry, interrupt about 2950 Lines C + asm*
• In libc

• syscall interface and bit operations
• setjmp/longjmp

* v850 uClinux implementation

 13

Initial Targets

• Criteria: Minimum Requirements and Openess

• Simple Target: Plasma MIPS
• VHDL model and C simulation
• CPU, Memory and 24 bit hardware timer
• ~1500 FPGA LUTs
• ~600 lines of C code for simulator

 14

●Just an Instruction Chewer
void cycle(State *s)
{
...
 opcode = mem_read(s, 4, s->pc);
...
 s->pc = s->pc_next;
 s->pc_next = s->pc_next + 4;
...
 switch(op)
 {
 case 0x03:/*JAL*/ r[31]=s->pc_next;
 case 0x02:/*J*/ s->pc_next=target; break;
 case 0x04:/*BEQ*/ branch=r[rs]==r[rt]; break;
 case 0x05:/*BNE*/ branch=r[rs]!=r[rt]; break;
 case 0x06:/*BLEZ*/ branch=r[rs]<=0; break;
 case 0x07:/*BGTZ*/ branch=r[rs]>0; break;
 case 0x08:/*ADDI*/ r[rt]=r[rs]+(short)imm; break;
 case 0x09:/*ADDIU*/ u[rt]=u[rs]+(short)imm; break;
...
 }
}

 15

Initial Targets

• Criteria: Minimum Requirements and Openess

• Modern Target: LEON2/3 SPARC
• VHDL model and C simulation
• CPU, Memory and full peripheral set
• Full SoC with MMU and SMP in FPGA
• Cycle accurate Simulator and CoSimulation

 16

 Initial Targets for Reference

• UserSpace will recompile anywhere
• Can make a Gate Array ASIC SoC cheaply

• Even low volume FPGA based system
• Proves noMMU/MMU and Endian issues

• Porting to a “commercial” SoC is trivial

 17

Hardware Examples

• Realtek MIPS: Similar to Plasma
• MIPS R3000 style CPU with timer
• Customer Peripheral set
• Very successful commercial platform

• SH3: Similar to LEON SPARC
• RISC instruction set with DSP extensions
• Custom peripheral set
• SoC platform

 18

Technology Comparison

SH3+DSP LEON SPARC SMP Lexra MIPS Plasma MIPS
noMMU

233 MHz, cache, XY
mem

50-400 MHz, 7 stage
pipe

190 MHz, low
complexity

36 MHz, Soft Core

Separate DSP Engine 1-4 SMP Cores + DSP
inst

DSP in MIPS machine
code

Single Core, no DSP

$8 SoC $18 ASIC $5 SoC $12 FPGA

Wired. Dual Eth
VoIP terminal router

Wired/Wireless. Dual
Eth
VoIP base-station

Wired/Wireless Base
Band
Consumer VoIP Router

Wired. Flexible
App Specific
Controller

4Mbyte NOR FLASH
8Mbyte RAM

2Mbyte Serial FLASH,
SD Card, 64Mbyte
RAM

2Mbyte NOR FLASH
16 Mbyte RAM

2-4Mbyte Serial
FLASH
16-64 Mbyte RAM

 19

 Memory Management - MIPS

 20

 Memory Management – SH3

 21

Reusable Basic Platforms

• Open Hardware Platforms
• 400k Gate FPGA board with 10Base-T

• 2 Layer board, designed as a reusable module
• Plasma SoC Prototype platfrom
• Directly integrate into low volume projects/products

• 1.6M Gate FPGA module with 2x 100Base-T
• 4 Layer module
• LEON2/3 SPARC SoC Prototype Platfrom
• Module Form Factor for direct integration also

• Direct path to eASIC SoC implementation

 22

2 Overall Objectives

• A Basic set of Platforms: HW and SW
• Open and reusable as basis for future work
• Serves as a benchmark and a starting point
• Easily accessible and available

• A technical solution to Vendor Participation
• An answer to “why should we, we can just take it”
• A way for the community to benefit from the work
• A technically compelling case

 23

Reusable Code

3
Software Architecture

 24

Unified Approach

• BaseOS Layer
• Provide a standard Bundle of Functionality

• Miniature POSIX like environement
• Well Documented
• Very portable and self contained

• Packages for Berkeley Networking
• Basic Networking
• Routing and Storage layers

• Management Framework
• Configuration database and filesystem overlay

 25

 Code Storage and Execution

• Storage as a set of components
• Digitally Signed
• Decompressed on-the-fly
• Sparse Pages in RAM, page cache backed

• On uClinux, executables loaded at runtime
• Pluggable Application Layer

 26

Memory Management

 27

Embedded as a Platform

• User is in control of his/her device
• Loads whatever they want

• Mangement/Configuration automatically integrates
• “Officially Supported” 3rd party Applications

• Basic Functionality of the OS guaranteed
• BaseOS provides the standard Platfrom

 28

 User Space Architecture

 29

Blocks, Not Bricks

• Single Filesystem is dangerous
• Update with incompatible package -> Brick
• Install malware -> Brick
• User Error -> Brick

• Storage of Atomic Components
• Bootloader support for flaging broken Blocks

• Fail-to-boot blame and recovery
• Read-Only Component parts

 30

The Package Concept
• Basic Unit of Storage

• Concept: PalmOS Even Apps are db records
• Functionality is containerized
• Safety through Digital Signature

• Package is Self Contained
• Concept: Mac OS X Bundles or OpenOffice Docs

• Self identifying and atomic
• Dynamic Integration

• Concept: Registry or Management Information Base
• Standard MIB2 Layout. eg. RFC1213 for TCP/IP

 31

Packages in FLASH

 32

 Dynamic Runtime Filesystem

 33

DB Backed File Generation
• XML Syntax like JSP, stored tokenized
for tag looping test
<ctl:for var=i start="10" stop="13">
<ctl:for var=j start="10" stop="${$i}">
i has value <ctl:out value="${$i}"/>
j is <ctl:out value="${$j}"/></ctl:for></ctl:for>

EL arithmetic test
(7+3)*5 = <ctl:out value="${ (7 + 3) * 5}"/>
-7+3*5 = <ctl:out value="${ -7 + 3 * 5}"/>

Set and if test
<set var="val" value="true"/><out value="${$val}"/>
<if test="${$val}"> Taken! </if>

MIB Namespace
<mib:get var=”val” oid=”SysUpTime”/>
System Running for <out value=”${$val}”/>hrs.

 34

 Specification and
Implementation

• OpenSouce and Portable
• Bootloader support
• Dynamic FileSystem Implemetation
• Packaging Utilities
• Cryptographic Utilities

• Specifications
• Documentation
• Test Suites

• Example Build Kit

 35

Projects and Participation

4
Vendors, Engineers and Community

 36

Community Building

• A Community Framework
• Not just Project Components, also Process

• Vendor a part of the process, not just feed off it
• Upstream Synchronization

• No more years-old known bugs in products

• OpenSourceEmbedded

 37

 3 Parties, Views and Objectives

OSE.org – Generating Community Effect
● Public Project hosting (web front-ends) necessary for

community involvement.
● for the various projects that have gone public with

code and documentation.
● for Vendors showcasing their OpenSource based

products
● provides the technical and end-user documentation

 38

 3 Parties, Views and Objectives

OSE.net – Software Engineers Collaborating
● Like a sourceforge, with project management tools
● Place to host the code, but with various legal

frameworks for public release
● Provides access to NDA material to engineers
● provides the distribution mechanism for the GPL

distribution services of the .com entity

 39

 3 Parties, Views and Objectives
OSE.com – Getting the Vendors to Contribute

● Corporate entity legally able to sign NDA's and other
contracts

● Standard engagement method with services and
point of contact for Silicon Vendors, ODM's, and
OEM's.

● Standard tree of code as a starting point, and to
promote “platform” unification

● Provides GPL distribution and License Compliance
● Provides Project Management tools and services
● Access to Engineers, or lets Vendor's engineers work

with the structured web tools

 40

The uClinux Experience

• A “kit” approach works for vendors
• Community Building requires a code base

• Easily accessible, non threatening
• A clear set of goals that mesh with engineer's needs

• Engineers Contribute
• Vendor organizations don't (generally)

• Sponsorship is a bust
• The project needs to be Vendor Agnostic

• Not even a preferred Silicon Vendor

 41

OpenSourceEmbedded

• New Home for 3 parties

• OpenSourceEmbedded.org
• Users

• OpenSourceEmbedded.net
• Community

• OpenSourceEmbedded.com
• Vendors

 42

Process Flow

• Vendors contract with the OSE.com entity
• OSE.com entity works with Engineers
• Engineers create code & projects on OSE.net
• OSE.net publishes

• Vendors have a page at Vendor.OSE.com
• Customers get code and updates at OSE.org

 43

GPL and Vendors

• Vendors have no incentive to participate
• So we have to give them one.

• Vendors are only interested in shipping
products
• OpenSourceEmbedded gives them scalability
• OpenSourceEmbedded Provides compliance

• Enforcement is a secondary option
• Use enforcement to bring vendors into the process

 44

Getting Participation

• From Engineers
• Status, Cool Code, Cool Projects and Jobs

• From Vendors
• Scalable design process, High Quality Code
• Silicon Vendors just want to sell chips
• Need to Solicit individual ODMs
• GPL Compliance Process can bring Vendors in

• From End Users
• App Store!!!!

 45

Upstream Projects

• Pull code directly from the O.S.E Repositories
• Complete Coherent BaseOS and Basic Apps
• Embedded Specific trees hosted at OSE.org

• Become involved in the development process
“...and I hear my application is used in some routers”

• No more Years Old bugs and Regressions
• Tracking of upstream by package maintainers

• GPL Compliance by design

 46

Scalable
OpenSource Embedded

Thank You
Questions and Discussion

http://dionne.ca/lk2008

