< redhat

Device-Mapper Remote Replication Target
Linux-Kongress Hamburg 2008

Heinz Mauelshagen
Consulting Development Engineer

‘. redhat

Top

data replication basics

use case examples

device-mapper architecture/overview
device-mapper replicator architecture/overview
mapping table syntax

mapping table example

dmsetup tool

project status/future directions

URLs

’_redhat_
Data Replication Basics

serves disaster recovery purposes by allowing to keep copies of production data
in multiple separate locations

can occur at various possible levels (application, filesystem, block device, ...) and
in active-active (read/write) access in multiple locations) and active-passive
forms; this presentation focuses on block device active-passive replication

continuous data protection (CDP) copies production data when it's being written
to one or more secondary sites

data is replicated to one or more remote sites in order to satisfy different
recovery objectives

fail-over from a primary (i.e. active) site to one of the secondary (i.e. passive)
sites holding up-to-date data

(almost) no non-redundant periods of time as with traditional, infrequent backups
on a daily/weekly/... schedule

can be synchronous (application needs to wait for replication of written data to
finish) or asynchronous (application receives completion when local write
completed)

’_ redhat
Data Replication Basics (continued...)

synchronous replication requires low-latency, high-bandwidth interconnects to
minimize application write delays (e.g. 10 kilometers already cause 67us
because of the speed of light vs. 10-20us to local cache; think about long-
distance replication e.g. Berlin -> New York!)

on long-distance links, latencies can not be made negligible and bandwidth can
not be arbitrary high because of physical, technical and budget constraints

because of that, the practical and affordable use case on long distance links is
asynchronous replication

special business requirements may cause synchronous replication on short links
replication needs to cope with (temporary) failed remote device access

replication properties are adjustable to address different recovery point objectives
(RPQOs); e.g. 100MB maximum fallbehind in asynchronous replication, hence
switching to synchronous replication when that threshold's being reached

In order to provide consistent replicas at any point in time, it is mandatory to
support grouping of devices and ensure write-ordering-fidelity for the whole
group

(e.g. N database devices being written to); replication can break at any given
point in time, nonetheless allowing for application recovery

Q redhat

Example 1: Asynchronous Replication

) Mount only on Failure of Primary
Primary owned by

Single machine or
Cluster

NYC Paris

Q redhat

Example 2: “Follow the Sun”

16 GMT -
24 GMT

SFO Paris Tokyo SFO Paris Tokyo

08 GMT -
16 GMT

SFO Paris Tokyo

Q redhat

Example 3: Sync Mirror + Async Replication

Sync Mirror + Async Replication

Mount only on Failure of Primary Sync Mirror

Mirrored Writes Replicated

’_ redhat
Device-Mapper Architecture (1)

Device-Mapper aka dm is the generic mapping runtime platform in the
Linux kernel (since 2.5)

can be used by multiple applications which require block device mapping
(e.g, dmraid, LVM2, kpartx)

doesn't “know” about any application concept of Logical Volumes etc.

manages Mapped-Devices aka mds (create, remove, ...) with their device nodes
and mappings (e.g. sector N/device A -> sector M/device B)

defines mapping of mds via text formatted Mapping-Tables (load, unload,
reload);
format: <start> <length> <target> [<target_parameters...]

pluggable Mapping-Targets do the actual mapping (e.g. linear, mirror, striped,
snapshot, multipath, zero, error, replicator, ...) with ctr,dtr,map,status,...
interface functions

maps to arbitrary block devices (e.g. (i)SCSI)

’_ redhat
Device-Mapper Architecture (2)

Mapping-Targets (e.g. dm-replicator) are dynamically loadable and register with
the dm core

mds can be stacked in order to build complex mappings (e.g. replication on top
of a mirror)

dm kernel provides dirty logging (i.e. keeping state about pending writes on
regions or out-of-sync regions; dm-dirty-log), low-level io (dm-io) routines and a
copy service (dm-kopyd)

user space library (libdevmapper) to be interfaced by Device/Volume
Management applications and a test tool dmsetup

library creates device nodes to access mds in /dev/mapper/

’_ redhat
Device-Mapper Architecture (3)

Examples of Mapping-Tables which can be activated using the dmsetup tool:

“0 1024 linear /dev/sdal 40

1024 2048 striped 2 64 /dev/sdal 1064 /dev/sdb1 0”

maps sectors 0-1023 of md to /dev/sdal at offset sector 40 using the “linear”
target and

sectors 1024-2071 onto 2 stripes with a stride size of 64 onto device /dev/sdat,
sector offset 1064 and onto device /dev/sdb1, sector offset 0

“0 1024 zero

1024 1000 error”

creates a “zero” mapping for sectors 0-1023 and an “error” mapping for sectors
1024-2023

“0 83886080 mirror core 1 1024 2 /dev/sdal 64 /dev/sdb1 64”

creates a “mirror” mapping for sectors 0-83886079 using the core dirty log with a
region size of 1024 sectors and 2 mirror legs on device /dev/sdal, sector offset
64 and device /dev/sdb1, same offset

Q redhat

Device-Mapper Architecture Overview

Userspace

Kernelpace

|

low-level device

@ rednat
dm-replicator Architecture (1)

falls appart into 3 modules: replicator core, log and slink module

replicator core module satisfies the device-mapper core interfaces to e.g.
construct/destruct a mapping, status and the actual map function to carry ios out

a log interface abstracts storing the written data together with their replication
state; different replication log plugins are possible and a “default” type with ring
buffer logic has been implemented

in case the ring buffer runs full, old entries are being dropped and state is being
kept to resynchronize the data using the dm dirty log subsystem; during
resynchronization there's no write-ordering guarantees

an slink interface abstracts accessing devices on site links; different slinks
plugins are possible and a “local” type has been implemented to allow for device
access via device nodes; other slink modules for different transports can follow

replicator core doesn't know how to store data in the replication log, it hands that
task to the replication log plugin

replicator log doesn't need to know how to access devices, it hands such
accesses to the slink plugin

’_ redhat
dm-replicator Architecture (2)

sync/async and fallbehind parameters are kept by the slink module and can be
requested from it

each of the replicator modules (core, log and slink) run one or more kernel
threads for various purposes

the core has one to handle the queue of incoming ios to throttle depending
on log contention

the log has one to process incoming ios to redirect them as entries to the ring
buffer together with metadata keeping state to which site links it needs copying
to, hence calling the slink plugin to do the copy

the slink has 2 to carry out copies to devices being requested by the log module
and to test (temporary) failed devices in order to inform the log module when it
can resubmit any failed ios

there's additional kernel threads in the dm-kcopyd and dm-io modules being
called by the slink module to do the low-level copies and ios

Q redhat

Device-Mapper Replicator Architecture Overview

dmsetup

Userspace
= >
replicator Kernelpace
| 0
dm-core [pem P . rcplicator
core log

i "
slink
I

low-level device

’_ redhat
Mapping-Table Syntax (1)

<start> <length> replicator \

replog_type #replog_params <replog_paramss>... \
\

slink_type #slink_params <slink_params>... \
#dev_params <dev_params>... \

dirtylog_type #dirtylog_params <dirtylog_params>...

’_ redhat
Mapping-Table Syntax (2)

replog_type = "replog" selects the default ring buffer log
<#replog_params> = 2-4

replog_params = dev_path dev_start [auto/create/open [size]]
dev_path = device path of replication log backing store
dev_start = offset to REPLOG header

create = create a new replication log or overwrite a given one
open = open a given replication log or falil

auto = open any given replication log or create a new one
Size = size to on create

’_ redhat
Mapping-Table Syntax (3)

slink_type = "local" to handle local device nodes
#slink_params = 1-3
<slink_params> = slink# [slink_policy [fall_behind]]
slink# = used to tie the host+dev_path to a particular SLINK;
0 is used for the local link+local devices (LDs)
and 1-M are for remote links+remote devices(RDs)
slink_policy = policy to set on the slink (async/sync)
fall_behind = threshold to switch from asynchronous
to synchronous mode
(ios=N, size=N[kmgpt], timeout=N[tsmhd])

’_ redhat
Mapping-Table Syntax (4)

#dev_params = 2
<dev_params> = dev# dev_path
dev#= unsigned int stored in the REPLOG to associate to a dev_path
dev_path = device path of device to replicate to
dirtylog type = "-"/"core"/"disk"
#dirtylog_params = 0-3 (1-2 for core dirty log type,
3 for disk dirty log only)
dirtylog_params = [dirty_log_path] region_size [[no]sync]

’_redhat_
Mapping-Table Example (1 LD + 1 RD, async)

0 209715200 replicator \

default 4 /dev/local_vg/replog_store 32 create 2097152 \
\

local 2 0 async ios=0 \

2 0 /dev/local_vg/Ivol0 \

-0

\

local 2 1 async ios=100 \

2 0 /dev/remote_vg/Ivol0 \

disk 3 32768 /dev/local_vg/slink1_lvol0_dirty log sync

’_redhat_
Mapping-Table Example (2nd LD + RD, async)

0 209715200 replicator \

default 4 /dev/local_vg/replog_store 32 open \

\

local 2 0 async ios=0 \

2 1 /dev/local_vg/Ivoll \

-0

\

local 2 1 async ios=100 \

2 1 /dev/remote_vg/lvoll \

disk 3 16384 /dev/local_vg/slink1_lvol1_dirty log sync

’_ redhat

dmsetup tool

Syntax:

dmsetup create mapped_device file
dmsetup status mapped_device

dmsetup remove mapped_device

(say we filed the 1LD+1RD example in file “r1_def” with
local_vg and remote_vg configured):

dmsetup create r1 r1_def

mount /dev/mapper/r1 /mnt/r1

...do_some fs io...

umount /mnt/r1

fsck -fy /dev/mapper/r1

’_redhat_
Status and Future Directions

dm-replicator in interface and code review + testing
to go upstream ASAP (FLW)

LVMZ2 design and implementation to support replication being worked on;
aims to replicate groups of Logical Volumes

‘. redhat
URLs

http://sources.redhat.com/dm (Device-Mapper tool+library, ...)
http://people.redhat.com/heinzm/sw/dm/dm-replicator
http://www.redhat.com/mailman/listinfo/dm-devel

to subscribe to dm-devel@redhat.com
http://www.redhat.com/mailman/listinfo/lvm-devel

to subscribe to lvm-devel@redhat.com

http://people.redhat.com/heinzm/sw/dm/dm-replicator
mailto:dm-devel@redhat.com

.........

Q&A

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

