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License

• + Classpath 
Exception

• Programs can have 
any license

• Improvements 
remain in the 
community

• FSFs license for GNU 
Classpath

• GPL v2
• No proprietary forks
• Popular & trusted 

license
• Compatible with 

GNU/Linux
• Fostering adoption
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Why GNU/Linux?

Demand

Values

Stack

•Freedom as a core 
value

•Free Software above 
and below the JVM

•Increasing demand 
for Java integration
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Linux distributions
• Linux kernel
• GNU libc + utilities
• X11, GNOME, KDE, …
• Package management
• Built-in way to download, install, 

manage, uninstall all software in a 
distribution, including dependencies, 
from a single source

• Killer feature!
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Package management
• Sources → Binaries + Metadata + Glue
• Sources = upstream source + patches
• Binaries = 1..N packages from build
• Metadata = versioning, deps, description
• Glue = (de)installation scripts, etc.
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Benefits of package management
• Installation state in packaging database
• Anyone can rebuild anything anytime
• Creating patched/new packages possible
• Easy to customize distributions
• Builtin integrity & security checks
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Leads to ...
• All software installable as packages
• Thousands of interdependent packages
• Package repositories
• Demand for stable releases
• Consolidation
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Further benefits
• Ability to 'rebuild the world' from scratch
• Implications for security & QA
• Bill of materials (licenses, etc.)
• Build logs
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How to scale
• Make room for error in versioning
• Versioned dependencies, ranges, ...
• Epochs
• Try to only have one version of a library
• Introduce virtual dependencies
• Separate build and runtime deps
• Separate development and stable
• Welcome contributions, but enforce a 

strict social process
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So much fun, everyone is doing it
• Haskell : Hackage/Cabal
• Lua : Rocks
• Perl: CPAN
• PHP: PEAR
• Python: EasyInstall/eggs
• Ruby: Gems
• … where is Java?
• Hold that thought!
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Distributing software for Linux
• As source code
• As a binary package
• More then 300 distributions
• At least 6 major ones
• At least as many packaging formats, 

processes, guidelines
• Not very appealing to Java developers
• Who are used to passing JARs around
• Very low overhead, works pretty well
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Pragmatic approaches
• One way: Pick the ones you care about
• Rely on community for the rest
• Another: OpenJDK 6 is source code only
• Patching+Packaging by IcedTea&Distros

• Both a technical and a cultural gap
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OpenJDK 6 Status
• Fedora
• Ubuntu
• Debian
• Gentoo
• OpenSUSE
• Mandriva
• … and others
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Building GlassFish v3 on Ubuntu
• Needs to build from source for 'main'
• Requires Maven2 to build
• Maven2 is a build tool with a large JAR 

repository
• Maven2 downloads 500+ JARs
• ~ 150 of them are third party libraries
• Phew: Most of them in multiple versions
• Oh no! Many of them unpackaged
• Repeat the work for each dependency
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The GlassFish Dependency Graph
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Problems
• One needs to track down third party 

library versions, transitive 
dependencies, and source code

• If documented, hard to compile into 
'package library X in version Y with 
source code URL Z' form

• No single source of metadata to make 
the analysis a matter of minutes

• Poor maintenance of binary compatibility 
between consecutive (open source) 
library versions
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Java Software Deployment
• First Problem: Where is my JVM?
• Solved by OpenJDK 6
• Available in a Linux distro near you
• Or coming to ... soon
• The JVM isn't a second class citizen on 

Linux any more
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Java Software Deployment
• Second: Where are my dependencies?
• SVN? Maven? OSGI? 
• Packaged by distro would be best
• apt-get build-dep openjdk6
• OpenJDK 6 provides foundation for 

packaging work
• Increasing interest in providing Java 

software as packages on top of it
• Still a lot of work to do – everyone's turn
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The good old Java way
• JARs = ZIP files + a bit of metadata
• Metadata: “attribute: value” pairs
• Often distributed without source code
• Even for open source software
• Rarely used existing features:

> Version & Class-Path metadata
> Package sealing
> cryptographical JAR signing

• Mildly frustrating for everyone.
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JAR Hell
• Predictable outcome of the Java way
• One $CLASSPATH per ClassLoader
• If two JARs with the same library are on 

$CLASSPATH, the first one wins
• If the first one is not sealed, classes in 

packages in first one could still be 
loaded from the second one

• If those classes depend on incompatible 
versions of classes existing in both the 
first and the second JAR: FAIL
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Getting out of there
• Existing JAR/Manifest mechanism is 

inadequate and/or unused
• Get developers to version their stuff
• To provide dependency information
• Make it all part of the standard JDK
• Put right in the language
• OpenJDK modules project
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Modules to the rescue
• New concept: module
• One module can contain many packages
• Some classes can be 'module-private'
• Dependencies and versioning info can be 

specified at source code level
• Modules can live in repositories
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Benefits
• Developers : express versioning and 

dependency metadata in the code
• Packagers : extract and analyze 

metadata on its own
• Basic building blocks for Java module 

distributions for end users



28

Java on Linux
• Linux Foundation : working on adding 

Java as Trial Use module to LSB 4.0
• OpenJDK 6 : in 'core'/'main' section of 

Fedora, Debian, Ubuntu
• Trickling down into derived distros
• More open source Java projects looking 

into packaging for Linux now
• Distributions interested in 

interoperability of package 
management tools with Java 
modularity solutions



Thank you for coming!

http://OpenJDK.java.net

dalibor.topic@sun.com

irc://irc.oftc.net/#openjdk 

mailto:dalibor.topic@sun.com
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