
Evolution of Java(TM)
Software on GNU/Linux

Dalibor Topić
Java F/OSS Ambassador
Sun Microsystems

http://robilad.livejournal.com

Dalibor.Topic@Sun.com

http://robilad.livejournal.com/

2

3

4

License

• + Classpath
Exception

• Programs can have
any license

• Improvements
remain in the
community

• FSFs license for GNU
Classpath

• GPL v2
• No proprietary forks
• Popular & trusted

license
• Compatible with

GNU/Linux
• Fostering adoption

5

6

Why GNU/Linux?

Demand

Values

Stack

•Freedom as a core
value

•Free Software above
and below the JVM

•Increasing demand
for Java integration

7

Linux distributions
• Linux kernel
• GNU libc + utilities
• X11, GNOME, KDE, …
• Package management
• Built-in way to download, install,

manage, uninstall all software in a
distribution, including dependencies,
from a single source

• Killer feature!

8

Package management
• Sources → Binaries + Metadata + Glue
• Sources = upstream source + patches
• Binaries = 1..N packages from build
• Metadata = versioning, deps, description
• Glue = (de)installation scripts, etc.

9

Benefits of package management
• Installation state in packaging database
• Anyone can rebuild anything anytime
• Creating patched/new packages possible
• Easy to customize distributions
• Builtin integrity & security checks

10

Leads to ...
• All software installable as packages
• Thousands of interdependent packages
• Package repositories
• Demand for stable releases
• Consolidation

11

Further benefits
• Ability to 'rebuild the world' from scratch
• Implications for security & QA
• Bill of materials (licenses, etc.)
• Build logs

12

How to scale
• Make room for error in versioning
• Versioned dependencies, ranges, ...
• Epochs
• Try to only have one version of a library
• Introduce virtual dependencies
• Separate build and runtime deps
• Separate development and stable
• Welcome contributions, but enforce a

strict social process

13

So much fun, everyone is doing it
• Haskell : Hackage/Cabal
• Lua : Rocks
• Perl: CPAN
• PHP: PEAR
• Python: EasyInstall/eggs
• Ruby: Gems
• … where is Java?
• Hold that thought!

14

Distributing software for Linux
• As source code
• As a binary package
• More then 300 distributions
• At least 6 major ones
• At least as many packaging formats,

processes, guidelines
• Not very appealing to Java developers
• Who are used to passing JARs around
• Very low overhead, works pretty well

15

Pragmatic approaches
• One way: Pick the ones you care about
• Rely on community for the rest
• Another: OpenJDK 6 is source code only
• Patching+Packaging by IcedTea&Distros

• Both a technical and a cultural gap

16

OpenJDK 6 Status
• Fedora
• Ubuntu
• Debian
• Gentoo
• OpenSUSE
• Mandriva
• … and others

17

18

Building GlassFish v3 on Ubuntu
• Needs to build from source for 'main'
• Requires Maven2 to build
• Maven2 is a build tool with a large JAR

repository
• Maven2 downloads 500+ JARs
• ~ 150 of them are third party libraries
• Phew: Most of them in multiple versions
• Oh no! Many of them unpackaged
• Repeat the work for each dependency

19

The GlassFish Dependency Graph

20

Problems
• One needs to track down third party

library versions, transitive
dependencies, and source code

• If documented, hard to compile into
'package library X in version Y with
source code URL Z' form

• No single source of metadata to make
the analysis a matter of minutes

• Poor maintenance of binary compatibility
between consecutive (open source)
library versions

21

Java Software Deployment
• First Problem: Where is my JVM?
• Solved by OpenJDK 6
• Available in a Linux distro near you
• Or coming to ... soon
• The JVM isn't a second class citizen on

Linux any more

22

Java Software Deployment
• Second: Where are my dependencies?
• SVN? Maven? OSGI?
• Packaged by distro would be best
• apt-get build-dep openjdk6
• OpenJDK 6 provides foundation for

packaging work
• Increasing interest in providing Java

software as packages on top of it
• Still a lot of work to do – everyone's turn

23

The good old Java way
• JARs = ZIP files + a bit of metadata
• Metadata: “attribute: value” pairs
• Often distributed without source code
• Even for open source software
• Rarely used existing features:

> Version & Class-Path metadata
> Package sealing
> cryptographical JAR signing

• Mildly frustrating for everyone.

24

JAR Hell
• Predictable outcome of the Java way
• One $CLASSPATH per ClassLoader
• If two JARs with the same library are on

$CLASSPATH, the first one wins
• If the first one is not sealed, classes in

packages in first one could still be
loaded from the second one

• If those classes depend on incompatible
versions of classes existing in both the
first and the second JAR: FAIL

25

Getting out of there
• Existing JAR/Manifest mechanism is

inadequate and/or unused
• Get developers to version their stuff
• To provide dependency information
• Make it all part of the standard JDK
• Put right in the language
• OpenJDK modules project

26

Modules to the rescue
• New concept: module
• One module can contain many packages
• Some classes can be 'module-private'
• Dependencies and versioning info can be

specified at source code level
• Modules can live in repositories

27

Benefits
• Developers : express versioning and

dependency metadata in the code
• Packagers : extract and analyze

metadata on its own
• Basic building blocks for Java module

distributions for end users

28

Java on Linux
• Linux Foundation : working on adding

Java as Trial Use module to LSB 4.0
• OpenJDK 6 : in 'core'/'main' section of

Fedora, Debian, Ubuntu
• Trickling down into derived distros
• More open source Java projects looking

into packaging for Linux now
• Distributions interested in

interoperability of package
management tools with Java
modularity solutions

Thank you for coming!

http://OpenJDK.java.net

dalibor.topic@sun.com

irc://irc.oftc.net/#openjdk

mailto:dalibor.topic@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

